Doplnění chybějící části obrazu pomocí hlubokého učení

Loading...
Thumbnail Image

Date

Authors

Zobaník, Radek

Mark

B

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

V této práci vznikla aplikace pro testování a porovnávání metod pro doplnění chybějící části obrazu za využití hlubokého učení a byly natrénovány dvě metody, pconv s konvoluční architekturou, respektive AOT-GAN s GAN architekturou. Práce popisuje návrh výsledné aplikace, její funkcionalitu a důležité body implementace. Byla zvolena datová sada, na které byly vybrané modely optimálně natrénovány. Proběhly experimenty na AOT-GAN modelu, kdy se zkoumal vliv počtu AOT bloků v generátoru na výsledný doplněný obraz. Všechny experimenty byly kvalitativně a kvantitativně porovnány. Výsledky ukázaly úctyhodné výsledky při práci s přírodní scenérií.
In this thesis, an application was developed for testing and comparing methods for completing missing parts of an image using deep learning, and two methods were trained, pconv with convolutional architecture, and AOT-GAN with GAN architecture. The thesis describes the design of the finished application, its functionality, and important implementation details. A dataset was selected on which the chosen models were optimally trained. Experiments were made on the AOT-GAN model to investigate the impact of the number of AOT blocks in generator on the resulting completed image. All experiments were qualitatively and quantitatively compared. The results showed respectable outcomes when working with natural scenery.

Description

Citation

ZOBANÍK, R. Doplnění chybějící části obrazu pomocí hlubokého učení [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

prof. Dr. Ing. Jan Černocký (předseda) Ing. Ivana Burgetová, Ph.D. (člen) Ing. Michal Hradiš, Ph.D. (člen) Ing. Josef Strnadel, Ph.D. (člen) doc. RNDr. Dana Hliněná, Ph.D. (člen)

Date of acceptance

2024-06-10

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných, např. ohledně důvodu odevzdaní kódu použité knihovny v rámci vlastní implementace na přiloženém datovém médiu a jeho modifikace. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B - velmi dobře.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO