Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturing

dc.contributor.authorSlámečka, Karelcs
dc.contributor.authorKashimbetova, Adeliacs
dc.contributor.authorPokluda, Jaroslavcs
dc.contributor.authorZikmund, Tomášcs
dc.contributor.authorKaiser, Jozefcs
dc.contributor.authorMontufar Jimenez, Edgar Benjamincs
dc.contributor.authorČelko, Ladislavcs
dc.coverage.issue1cs
dc.coverage.volume225cs
dc.date.accessioned2023-01-03T15:56:52Z
dc.date.available2023-01-03T15:56:52Z
dc.date.issued2023-01-26cs
dc.description.abstractMetallic porous structures (scaffolds) produced by additive manufacturing represent an important class of personalised implants used in load-bearing orthopaedic applications. As such, their fatigue performance must be excellent to prevent the need for revision surgery. This paper provides insight into the high-cycle fatigue behaviour of novel titanium scaffolds with hierarchical porosity and properties comparable to those of human bone that were produced by direct ink writing (DIW) and tested under cyclic loading typical for bone implants. Opposite to traditional expectations in the field of metal fatigue, scaffolds produced with an open intrastrand pore network (14.3%) endured nearly an order of magnitude more cycles than those with relatively compact strands (5.9%) and their normalized fatigue strength (62% of their yield strength in one milion cycles) was competitive with many current titanium scaffolds produced by other additive manufacturing technologies. Improved fatigue performance was related to fatigue crack growth shielding effects that reduced the crack growth rate, prolonged the crack path, and increased energy absorption. Consequently, these novel hierarchically porous titanium structures prepared by DIW can serve safely under cyclic loading conditions, and at the same time can provide multiple open porosity-related functionalities in advanced biomedicine and other industrial sectors.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMaterials & Design. 2023, vol. 225, issue 1, p. 1-11.en
dc.identifier.doi10.1016/j.matdes.2022.111453cs
dc.identifier.issn0264-1275cs
dc.identifier.other180437cs
dc.identifier.urihttp://hdl.handle.net/11012/208730
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofMaterials & Designcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0264127522010760cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0264-1275/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectDirect ink writingen
dc.subjectTitaniumen
dc.subjectPorous structureen
dc.subjectFatigueen
dc.subjectCrack pathen
dc.titleFatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-180437en
sync.item.dbtypeVAVen
sync.item.insts2023.01.28 00:54:46en
sync.item.modts2023.01.28 00:14:23en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé instrumentace a metody pro charakterizace materiálůcs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0264127522010760main.pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S0264127522010760main.pdf