New trends in methyl salicylate sensing and their implications in agriculture

Loading...
Thumbnail Image

Authors

Ashrafi, Amirmansoor
Bytešníková, Zuzana
Cané, Carles
Lukas, Richtera
Vallejos Vargas, Stella

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Methyl salicylate (MeSal) is an organic compound present in plants during stress events and is therefore a key marker for early plant disease detection. It has usually been detected by conventional methods that require bulky and costly equipment, such as gas chromatography or mass spectrometry. Currently, however, chemical sensors provide an alternative for MeSal monitoring, showing good performance for its determination in the vapour or liquid phase. The most promising concepts used in MeSal determination include sensors based on electrochemical and conductometric principles, although other technologies based on mass-sensitive, microwave, or spectrophotometric principles also show promise. The receptor elements or sensitive materials are shown to be part of the key elements in these sensing technologies. A literature survey identified a significant contribution of bioreceptors, including enzymes, odourant-binding proteins or peptides, as well as receptors based on polymers or inorganic materials in MeSal determination. This work reviews these concepts and materials and discusses their future prospects and limitations for application in plant health monitoring.
Methyl salicylate (MeSal) is an organic compound present in plants during stress events and is therefore a key marker for early plant disease detection. It has usually been detected by conventional methods that require bulky and costly equipment, such as gas chromatography or mass spectrometry. Currently, however, chemical sensors provide an alternative for MeSal monitoring, showing good performance for its determination in the vapour or liquid phase. The most promising concepts used in MeSal determination include sensors based on electrochemical and conductometric principles, although other technologies based on mass-sensitive, microwave, or spectrophotometric principles also show promise. The receptor elements or sensitive materials are shown to be part of the key elements in these sensing technologies. A literature survey identified a significant contribution of bioreceptors, including enzymes, odourant-binding proteins or peptides, as well as receptors based on polymers or inorganic materials in MeSal determination. This work reviews these concepts and materials and discusses their future prospects and limitations for application in plant health monitoring.

Description

Citation

BIOSENSORS & BIOELECTRONICS. 2023, vol. 223, issue 1, 12 p.
https://www.sciencedirect.com/science/article/pii/S095656632201048X

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO