Influence of surface roughness on molecular flow through labyrinth seals for space applications

dc.contributor.authorPouzar, Josefcs
dc.contributor.authorKošťál, Davidcs
dc.contributor.authorWesterberg, Lars-Görancs
dc.contributor.authorNyberg, Erikcs
dc.contributor.authorPoláček, Tomášcs
dc.contributor.authorJuřík, Karelcs
dc.contributor.authorKřupka, Ivancs
dc.coverage.issueDecembercs
dc.coverage.volume28cs
dc.date.accessioned2026-02-18T11:53:55Z
dc.date.issued2025-10-01cs
dc.description.abstractLabyrinth seals are commonly used in space mechanisms to reduce evaporative losses of lubricant molecules and limit the transport of contaminants. Analytical models and numerical simulations for predicting mass flow through these seals typically assume smooth, idealized surfaces, neglecting the effects of realistic surface roughness. This study systematically investigates the impact of surface roughness on the transmission probability (TP) of oil molecules using Monte Carlo simulations under free molecular flow conditions. Key geometric and surface parameters including average roughness (Ra), corridor length, and seal width are varied to evaluate their influence on molecular transport. The results demonstrate that surface roughness significantly reduces TP and molecular flux, especially in narrow and elongated geometries. Furthermore, increasing surface roughness by an order of magnitude enables a reduction in channel length or an increase in gap width by approximately 35–40% while maintaining equivalent transmission probability. Based on these findings, a correction model is proposed to improve prediction accuracy and is validated against experimentally measured oil evaporative losses. This work highlights the potential of controlled surface texturing as a design strategy to both enhance sealing effectiveness and enable geometric reductions for improved compactness and manufacturability.en
dc.formattextcs
dc.format.extent1-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationResults in Engineering. 2025, vol. 28, issue December, p. 1-14.en
dc.identifier.doi10.1016/j.rineng.2025.107905cs
dc.identifier.issn2590-1230cs
dc.identifier.orcid0000-0003-4993-8529cs
dc.identifier.orcid0000-0003-1351-9373cs
dc.identifier.orcid0000-0001-5294-1855cs
dc.identifier.orcid0000-0002-0851-8475cs
dc.identifier.orcid0000-0002-2327-8342cs
dc.identifier.orcid0000-0002-6798-6957cs
dc.identifier.orcid0000-0002-9936-7480cs
dc.identifier.other199268cs
dc.identifier.researcheridJBR-8798-2023cs
dc.identifier.researcheridF-6941-2012cs
dc.identifier.researcheridJNE-5687-2023cs
dc.identifier.researcheridD-8147-2012cs
dc.identifier.scopus58682498000cs
dc.identifier.scopus55826337100cs
dc.identifier.urihttps://hdl.handle.net/11012/256276
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofResults in Engineeringcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2590123025039568cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2590-1230/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectLabyrinth sealen
dc.subjectSurface roughnessen
dc.subjectTransmission probabilityen
dc.subjectMolecular flowen
dc.subjectSpace mechanismsen
dc.titleInfluence of surface roughness on molecular flow through labyrinth seals for space applicationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/EH/EH22_008/0004634cs
sync.item.dbidVAV-199268en
sync.item.dbtypeVAVen
sync.item.insts2026.02.18 12:53:55en
sync.item.modts2026.02.18 12:32:55en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav teoretické a experimentální elektrotechnikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2590123025039568main.pdf
Size:
12.14 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2590123025039568main.pdf