(V)TEAM for SPICE Simulation of Memristive Devices With Improved Numerical Performance

dc.contributor.authorBiolek, Daliborcs
dc.contributor.authorKolka, Zdeněkcs
dc.contributor.authorBiolková, Vieracs
dc.contributor.authorBiolek, Zdeněkcs
dc.contributor.authorKvatinsky, Shaharcs
dc.coverage.issue2cs
dc.coverage.volume9cs
dc.date.issued2021-02-25cs
dc.description.abstractThe paper introduces a set of models of memristive devices for a reliable, accurate and fast analysis of large networks in the SPICE (Simulation Program with Integrated Circuit Emphasis) environment. The modeling starts from the recently introduced TEAM (ThrEshold Adaptive Memristor Model) and VTEAM (Voltage ThrEshold Adaptive Memristor Model). A number of improvements are made towards the stick effect elimination and other numerical renements to make the analysis of large networks fast and accurate. A set of models are proposed that utilize the synergy of several techniques such as window asymmetrization, integration with saturation, state equation preprocessing, scaling, and smoothing. The performance of models is tested in Cadence PSPICE 17.2 and particularly in HSPICE v2017, the latter on a large-scale CNN (Cellular Nonlinear Network) for detecting edges of binary images. The simulations manifest the usability of developed models for fast and reliable operation in networks containing more than one million nodes.en
dc.description.abstractThe paper introduces a set of models of memristive devices for a reliable, accurate and fast analysis of large networks in the SPICE (Simulation Program with Integrated Circuit Emphasis) environment. The modeling starts from the recently introduced TEAM (ThrEshold Adaptive Memristor Model) and VTEAM (Voltage ThrEshold Adaptive Memristor Model). A number of improvements are made towards the stick effect elimination and other numerical renements to make the analysis of large networks fast and accurate. A set of models are proposed that utilize the synergy of several techniques such as window asymmetrization, integration with saturation, state equation preprocessing, scaling, and smoothing. The performance of models is tested in Cadence PSPICE 17.2 and particularly in HSPICE v2017, the latter on a large-scale CNN (Cellular Nonlinear Network) for detecting edges of binary images. The simulations manifest the usability of developed models for fast and reliable operation in networks containing more than one million nodes.en
dc.formattextcs
dc.format.extent30242-30255cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2021, vol. 9, issue 2, p. 30242-30255.en
dc.identifier.doi10.1109/ACCESS.2021.3059241cs
dc.identifier.issn2169-3536cs
dc.identifier.orcid0000-0002-7607-6146cs
dc.identifier.orcid0000-0003-2589-2722cs
dc.identifier.orcid0000-0003-2589-2722cs
dc.identifier.other170268cs
dc.identifier.researcheridE-4125-2018cs
dc.identifier.researcheridE-3657-2018cs
dc.identifier.researcheridE-3698-2018cs
dc.identifier.scopus6603672687cs
dc.identifier.scopus6602443208cs
dc.identifier.scopus6506028849cs
dc.identifier.urihttp://hdl.handle.net/11012/196418
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://ieeexplore.ieee.org/document/9354151cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMemristoren
dc.subjectVTEAMen
dc.subjectwindow functionen
dc.subjectstick effecten
dc.subjectSPICEen
dc.subjectcellular nonlinear networken
dc.subjectMemristor
dc.subjectVTEAM
dc.subjectwindow function
dc.subjectstick effect
dc.subjectSPICE
dc.subjectcellular nonlinear network
dc.title(V)TEAM for SPICE Simulation of Memristive Devices With Improved Numerical Performanceen
dc.title.alternative(V)TEAM for SPICE Simulation of Memristive Devices With Improved Numerical Performanceen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-170268en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:10:33en
sync.item.modts2025.10.14 09:34:38en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektronikycs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09354151.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
09354151.pdf