Photoactivated materials and sensors for NO2 monitoring

Loading...
Thumbnail Image

Authors

Šetka, Milena
Claros Vargas, Martha Carmiňa
Chmela, Ondřej
Vallejos Vargas, Stella

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry
Altmetrics

Abstract

This review presents the recent research efforts and developments in photoactive materials for sensing ppb concentrations of NO2. It also includes the fundamentals of photoactivated gas sensing and enabling technologies for achieving light-activated gas microsensors. The discussion addresses the most common strategies to improve photoactivity in gas-sensitive materials, including tuning surface vacancies in semiconductor materials and forming nanoscale interfaces based on metal-semiconductor or semiconductor-semiconductor junctions. The data points to gas-sensitive materials containing ZnO as the most representative NO2 photoresponsive semiconductors. Besides, it exhibits novel photoactive materials with promising NO2 sensitivity, such as transition metal dichalcogenides, organic semiconductors, or organo-functional structures. The literature shows that photoactivated gas sensors have competitive detection limits and form factors as their commercial counterparts. Further improvements face to practical applications are forecasted to these sensing components by using material engineering and microfabrication technologies.
This review presents the recent research efforts and developments in photoactive materials for sensing ppb concentrations of NO2. It also includes the fundamentals of photoactivated gas sensing and enabling technologies for achieving light-activated gas microsensors. The discussion addresses the most common strategies to improve photoactivity in gas-sensitive materials, including tuning surface vacancies in semiconductor materials and forming nanoscale interfaces based on metal-semiconductor or semiconductor-semiconductor junctions. The data points to gas-sensitive materials containing ZnO as the most representative NO2 photoresponsive semiconductors. Besides, it exhibits novel photoactive materials with promising NO2 sensitivity, such as transition metal dichalcogenides, organic semiconductors, or organo-functional structures. The literature shows that photoactivated gas sensors have competitive detection limits and form factors as their commercial counterparts. Further improvements face to practical applications are forecasted to these sensing components by using material engineering and microfabrication technologies.

Description

Citation

Journal of Materials Chemistry C. 2021, vol. 9, issue 47, p. 16804-16827.
https://pubs.rsc.org/en/content/articlelanding/2021/tc/d1tc04247e

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO