Bacterial Diversity in the Asphalt Concrete Lining of the Upper Water Reservoir of a Pumped-Storage Scheme

Loading...
Thumbnail Image

Authors

Špano, Miroslav
Říha, Jaromír
Španová, Alena
Šedo, Ondrej
Rittich, Bohuslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Asphalt concrete linings (ACLs) are frequently used in pumped-storage hydropower schemes with frequently oscillating reservoir water levels. ACLs can be damaged during operation, which shortens their service life. One type of damage is the formation of blisters. In this study, the bacterial diversity in damaged and undamaged portions of the ACL of an upper water reservoir was evaluated. Matrix-Assisted Laser Desorption/Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) was employed for the identification of the bacterial strains. No bacteria were detected growing inside the undamaged dense layer. Low bacterial diversity (2 and 4 morphotypes) was found in the upper part that has no contact with the reservoir water and in the lowest part that is permanently under water, respectively. More complex bacterial diversity (16 morphotypes covered by 2 different genera and 4 species) was found on the mastic coating of the ACL, which was alternately under and above the water. Very complex bacterial compositions (53 morphotypes covered by at least 13 different species from 6 genera) were found in samples taken from open blisters. Bacterial genera that are known to utilize asphalt products as a source of nutrition were found in the open blisters. The results reflect the importance of bacterial diversity in blisters and their possible role in ACL degradation.
Asphalt concrete linings (ACLs) are frequently used in pumped-storage hydropower schemes with frequently oscillating reservoir water levels. ACLs can be damaged during operation, which shortens their service life. One type of damage is the formation of blisters. In this study, the bacterial diversity in damaged and undamaged portions of the ACL of an upper water reservoir was evaluated. Matrix-Assisted Laser Desorption/Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) was employed for the identification of the bacterial strains. No bacteria were detected growing inside the undamaged dense layer. Low bacterial diversity (2 and 4 morphotypes) was found in the upper part that has no contact with the reservoir water and in the lowest part that is permanently under water, respectively. More complex bacterial diversity (16 morphotypes covered by 2 different genera and 4 species) was found on the mastic coating of the ACL, which was alternately under and above the water. Very complex bacterial compositions (53 morphotypes covered by at least 13 different species from 6 genera) were found in samples taken from open blisters. Bacterial genera that are known to utilize asphalt products as a source of nutrition were found in the open blisters. The results reflect the importance of bacterial diversity in blisters and their possible role in ACL degradation.

Description

Citation

Water. 2020, vol. 12, issue 11, p. 1-15.
https://www.mdpi.com/2073-4441/12/11/3045

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO