2D Germanane-MXene Heterostructures for Cations Intercalation in Energy Storage Applications

dc.contributor.authorGhosh, Kalyancs
dc.contributor.authorNg, Siow Wooncs
dc.contributor.authorLazar, Petrcs
dc.contributor.authorKandambath Padinjareveetil, Akshay Kumarcs
dc.contributor.authorMichalička, Jancs
dc.contributor.authorPumera, Martincs
dc.coverage.issue7cs
dc.coverage.volume34cs
dc.date.accessioned2025-02-03T14:50:36Z
dc.date.available2025-02-03T14:50:36Z
dc.date.issued2024-02-01cs
dc.description.abstractHeterostructures offer an exceptional possibility of combining individual 2D materials into a new material having altered properties compared to the parent materials. Germanane (GeH) is a 2D material with many favorable properties for energy storage and catalysis, however, its performance is hindered by its low electrical conductivity. To address the low electrochemical performance of GeH, a heterostructure of GeH and Ti3C2Tx is fabricated. The Ti3C2TX is a layered material belonging to the family of MXenes. The resulting heterostructure (GeMXene) at a defined mass ratio of GeH and Ti3C2Tx shows superior capacitive performance that surpasses that of both pristine materials. The effect of the size of cations and anions for intercalation into GeMXene in different aqueous salt solutions is studied. GeMXene allows only cation intercalation, which is evidenced by the gravimetric electrochemical quartz crystal microbalance (EQCM) technique. The capacitive performance of the GeMXene is compared in neutral, acidic, and alkaline electrolytes to determine the best electrochemical performance. This unleashes the potential use of GeMXene heterostructure in different electrolytes for supercapacitors and batteries. This work will pave the way to explore the heterostructures of other 2D materials such as novel MXenes and functionalized germanane for highly energy-storage efficient systems, and beyond.en
dc.formattextcs
dc.format.extent14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced functional materials. 2024, vol. 34, issue 7, 14 p.en
dc.identifier.doi10.1002/adfm.202308793cs
dc.identifier.issn1616-3028cs
dc.identifier.orcid0000-0001-6840-6590cs
dc.identifier.orcid0000-0003-2176-6710cs
dc.identifier.orcid0000-0001-6231-0061cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other187762cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.scopus36864451800cs
dc.identifier.urihttps://hdl.handle.net/11012/249988
dc.language.isoencs
dc.publisherWILEY-V C H VERLAG GMBHcs
dc.relation.ispartofAdvanced functional materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202308793cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1616-3028/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectenergy storageen
dc.subjectGeHen
dc.subjectheterostructuresen
dc.subjectsupercapacitoren
dc.subjectTi3C2Txen
dc.subjectXenesen
dc.title2D Germanane-MXene Heterostructures for Cations Intercalation in Energy Storage Applicationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-187762en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:36en
sync.item.modts2025.01.17 15:28:13en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AdvFunctMaterials2023Ghosh.pdf
Size:
4.41 MB
Format:
Adobe Portable Document Format
Description:
file AdvFunctMaterials2023Ghosh.pdf