Design adaptation of an electronically tunable oscillator using a low performance linearized CMOS operational transconductance amplifier
Loading...
Date
Authors
Šotner, Roman
Polák, Ladislav
Langhammer, Lukáš
Andriukaitis, Darius
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
This paper presents the implementation of commercially available CMOS devices with unfavorable properties, such as low output resistance, in an application designed to mitigate these limitations. By employing a specific topology and considering key design parameters, the proposed approach minimizes the adverse effects of low output resistance. This design focuses on a linearized operational transconductance amplifier (OTA) based on CMOS transistors, featuring with very low output resistance. This OTA is further integrated into an LC oscillator, where the associated disadvantages are suppressed through a specialized topology and careful selection of parameter values that are unaffected by the low OTA output resistance. The operational verification targets a frequency range of several hundred kHz and a linearly processed voltage range of several hundred mV. The linearized OTA-based low-gain amplifier/attenuator offers a linearity error within -7% (+/- 500 mV). The proposed OTA implementation in the oscillator introduces highly simplified method for adjusting the oscillation condition using a single grounded element while minimizing the adverse effects of low output resistance of OTA. Additionally, the tunability of the oscillator using varactor diodes achieving a range from 120 kHz to 273 kHz for a voltage varying from 0 V to 5 V.
This paper presents the implementation of commercially available CMOS devices with unfavorable properties, such as low output resistance, in an application designed to mitigate these limitations. By employing a specific topology and considering key design parameters, the proposed approach minimizes the adverse effects of low output resistance. This design focuses on a linearized operational transconductance amplifier (OTA) based on CMOS transistors, featuring with very low output resistance. This OTA is further integrated into an LC oscillator, where the associated disadvantages are suppressed through a specialized topology and careful selection of parameter values that are unaffected by the low OTA output resistance. The operational verification targets a frequency range of several hundred kHz and a linearly processed voltage range of several hundred mV. The linearized OTA-based low-gain amplifier/attenuator offers a linearity error within -7% (+/- 500 mV). The proposed OTA implementation in the oscillator introduces highly simplified method for adjusting the oscillation condition using a single grounded element while minimizing the adverse effects of low output resistance of OTA. Additionally, the tunability of the oscillator using varactor diodes achieving a range from 120 kHz to 273 kHz for a voltage varying from 0 V to 5 V.
This paper presents the implementation of commercially available CMOS devices with unfavorable properties, such as low output resistance, in an application designed to mitigate these limitations. By employing a specific topology and considering key design parameters, the proposed approach minimizes the adverse effects of low output resistance. This design focuses on a linearized operational transconductance amplifier (OTA) based on CMOS transistors, featuring with very low output resistance. This OTA is further integrated into an LC oscillator, where the associated disadvantages are suppressed through a specialized topology and careful selection of parameter values that are unaffected by the low OTA output resistance. The operational verification targets a frequency range of several hundred kHz and a linearly processed voltage range of several hundred mV. The linearized OTA-based low-gain amplifier/attenuator offers a linearity error within -7% (+/- 500 mV). The proposed OTA implementation in the oscillator introduces highly simplified method for adjusting the oscillation condition using a single grounded element while minimizing the adverse effects of low output resistance of OTA. Additionally, the tunability of the oscillator using varactor diodes achieving a range from 120 kHz to 273 kHz for a voltage varying from 0 V to 5 V.
Description
Keywords
Active device , Linearity , Operational transconductance amplifier , Oscillator , Output resistance , Source degeneration , Voltage-controlled oscillator , Active device , Linearity , Operational transconductance amplifier , Oscillator , Output resistance , Source degeneration , Voltage-controlled oscillator
Citation
Engineering Science and Technology, an International Journal. 2025, vol. 71, issue Listopad, p. 1-10.
https://www.sciencedirect.com/science/article/pii/S2215098625002332
https://www.sciencedirect.com/science/article/pii/S2215098625002332
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-2430-1815 