Performance and stability comparison of hydrostatic bearing pad geometry optimization approaches

Loading...
Thumbnail Image

Authors

Michalec, Michal
Foltýn, Jan
Svoboda, Petr
Křupka, Ivan
Hartl, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Altmetrics

Abstract

Hydrostatic bearings are commonly used across a range of applications, yet their reliance on externally pressurized lubricants presents significant energy consumption challenges. This research aims to experimentally assess various approaches for optimizing the geometry of hydrostatic bearing pads. Utilizing a two-pad hydrostatic tester equipped with online diagnostics, we analyzed optimized multi-recess pads developed through both analytical methods and computational fluid dynamics (CFD). Our results demonstrate that the CFD method achieves a substantially greater film thickness recess pressure compared to the analytical method under similar experimental conditions. Additionally, the CFD approach reduces pumping power losses by 14%. However, this improvement in performance is accompanied by a reduction in film stiffness and an increased sensitivity to eccentric overload or misalignment, as highlighted in our findings. While the adoption of CFD-optimized geometries offers significant potential for lowering energy consumption, maintaining precise alignment especially in large-scale applications remains essential. In summary, our study suggests that employing CFD optimization can effectively reduce the service costs associated with hydrostatic bearings, but optimal outcomes necessitate careful alignment considerations.
Hydrostatic bearings are commonly used across a range of applications, yet their reliance on externally pressurized lubricants presents significant energy consumption challenges. This research aims to experimentally assess various approaches for optimizing the geometry of hydrostatic bearing pads. Utilizing a two-pad hydrostatic tester equipped with online diagnostics, we analyzed optimized multi-recess pads developed through both analytical methods and computational fluid dynamics (CFD). Our results demonstrate that the CFD method achieves a substantially greater film thickness recess pressure compared to the analytical method under similar experimental conditions. Additionally, the CFD approach reduces pumping power losses by 14%. However, this improvement in performance is accompanied by a reduction in film stiffness and an increased sensitivity to eccentric overload or misalignment, as highlighted in our findings. While the adoption of CFD-optimized geometries offers significant potential for lowering energy consumption, maintaining precise alignment especially in large-scale applications remains essential. In summary, our study suggests that employing CFD optimization can effectively reduce the service costs associated with hydrostatic bearings, but optimal outcomes necessitate careful alignment considerations.

Description

Citation

FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH. 2025, vol. 89, issue 4, p. 1-10.
https://link.springer.com/article/10.1007/s10010-025-00837-8

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO