Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products
dc.contributor.author | Raghupathy, Bala Krishnan | cs |
dc.contributor.author | Vairavasundram, Subramaniyaswamy | cs |
dc.contributor.author | Ganesan, Manikandan | cs |
dc.contributor.author | Namachivayam, Rajesh Kumar | cs |
dc.contributor.author | Kotecha, Ketan | cs |
dc.contributor.author | Herencsár, Norbert | cs |
dc.date.accessioned | 2024-12-10T13:55:32Z | |
dc.date.available | 2024-12-10T13:55:32Z | |
dc.date.issued | 2024-11-29 | cs |
dc.description.abstract | Product tracking applications utilize the Internet of Things and cyber-physical systems to identify permitted or unauthorized user intrusions into the system. Classical machine learning algorithms cannot detect every risk in an environment that evolves constantly and where new abnormalities are visible. This article investigates the potential of quantum machine learning (QML) for real-time product purchase monitoring and intrusion detection using an enhanced quantum convolutional neural network (EQCNN) with signature-based detection over a massive volume of search space data (qubits). We suggest a three-stage technique to effectively handle the sensitive content: Pre-processing, EQCNN-based feature extraction, and syntactic pattern recognition. Signature-based identification is a feature of the EQCNN architecture that helps detect particular patterns linked to goods purchases or invasions. The model can minimize product tracking mistakes by utilizing the QML-based EQCNN with signature-based detection, resulting in a more efficient supply chain. | en |
dc.format | text | cs |
dc.format.extent | 13 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 2024, 13 p. | en |
dc.identifier.doi | 10.1109/TCE.2024.3509624 | cs |
dc.identifier.issn | 0098-3063 | cs |
dc.identifier.orcid | 0000-0002-9504-2275 | cs |
dc.identifier.other | 193456 | cs |
dc.identifier.researcherid | A-6539-2009 | cs |
dc.identifier.scopus | 23012051100 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/249750 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | IEEE TRANSACTIONS ON CONSUMER ELECTRONICS | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/10771968 | cs |
dc.rights | (C) IEEE | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0098-3063/ | cs |
dc.subject | Convolutional Neural Network | en |
dc.subject | Quantum Machine Learning | en |
dc.subject | RFID Product Tracking | en |
dc.subject | SBD | en |
dc.subject | Signature-Based Detection | en |
dc.title | Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-193456 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2024.12.10 14:55:32 | en |
sync.item.modts | 2024.12.10 13:32:08 | en |
thesis.grantor | VysokĂ© uÄŤenĂ technickĂ© v BrnÄ›. Fakulta elektrotechniky a komunikaÄŤnĂch technologiĂ. Ăšstav telekomunikacĂ | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- TCE.2024.3509624accepted.pdf
- Size:
- 3.99 MB
- Format:
- Adobe Portable Document Format
- Description:
- file TCE.2024.3509624accepted.pdf