Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products

Loading...
Thumbnail Image

Authors

Raghupathy, Bala Krishnan
Vairavasundram, Subramaniyaswamy
Ganesan, Manikandan
Namachivayam, Rajesh Kumar
Kotecha, Ketan
Herencsár, Norbert

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Altmetrics

Abstract

Product tracking applications utilize the Internet of Things and cyber-physical systems to identify permitted or unauthorized user intrusions into the system. Classical machine learning algorithms cannot detect every risk in an environment that evolves constantly and where new abnormalities are visible. This article investigates the potential of quantum machine learning (QML) for real-time product purchase monitoring and intrusion detection using an enhanced quantum convolutional neural network (EQCNN) with signature-based detection over a massive volume of search space data (qubits). We suggest a three-stage technique to effectively handle the sensitive content: Pre-processing, EQCNN-based feature extraction, and syntactic pattern recognition. Signature-based identification is a feature of the EQCNN architecture that helps detect particular patterns linked to goods purchases or invasions. The model can minimize product tracking mistakes by utilizing the QML-based EQCNN with signature-based detection, resulting in a more efficient supply chain.
Product tracking applications utilize the Internet of Things and cyber-physical systems to identify permitted or unauthorized user intrusions into the system. Classical machine learning algorithms cannot detect every risk in an environment that evolves constantly and where new abnormalities are visible. This article investigates the potential of quantum machine learning (QML) for real-time product purchase monitoring and intrusion detection using an enhanced quantum convolutional neural network (EQCNN) with signature-based detection over a massive volume of search space data (qubits). We suggest a three-stage technique to effectively handle the sensitive content: Pre-processing, EQCNN-based feature extraction, and syntactic pattern recognition. Signature-based identification is a feature of the EQCNN architecture that helps detect particular patterns linked to goods purchases or invasions. The model can minimize product tracking mistakes by utilizing the QML-based EQCNN with signature-based detection, resulting in a more efficient supply chain.

Description

Citation

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 2024, vol. 71, issue 1, p. 2309-2321.
https://ieeexplore.ieee.org/document/10771968

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO