Reconfigurable Fractional-Order Filter with Electronically Controllable Slope of Attenuation, Pole Frequency and Type of Approximation

Loading...
Thumbnail Image

Authors

Jeřábek, Jan
Šotner, Roman
Dvořák, Jan
Polák, Josef
Kubánek, David
Herencsár, Norbert
Koton, Jaroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

World Scientific Publishing
Altmetrics

Abstract

This paper presents design of electronically reconfigurable fractional-order filter that is able to be configured to operate as fractional-order low-pass filter (FLPF) or fractional-order high-pass filter (FHPF). Its slope of attenuation between pass band and stop band, i.e. order of the filter, is electronically adjustable in range between 1 and 2. Also pole frequency can be electronically controlled independently with respect to other tuned parameters. Moreover, particular type of approximation can be also controlled electronically. This feature set is available both for FLPF and FHPF type of response. Presented structure of the filter is based on well-known follow-the-leader feedback (FLF) topology adjusted in our case for utilization with just simple active elements operational transconductance amplifiers (OTAs) and adjustable current amplifiers (ACAs), both providing possibility to control its key parameter electronically. Paper explains how reconfigurable 3rd-order FLF topology is used in order to approximate both FLPF and FHPF in concerned frequency band of interest. Design is supported by PSpice simulations for three particular values of order of the filter (1.25, 1.5, 1.75), for several values of pole frequency and for two particular types of approximation forming the shape of both the magnitude and phase response. Moreover, theoretical presumptions are successfully confirmed by laboratory measurements with prepared prototype based on behavioral modeling.
This paper presents design of electronically reconfigurable fractional-order filter that is able to be configured to operate as fractional-order low-pass filter (FLPF) or fractional-order high-pass filter (FHPF). Its slope of attenuation between pass band and stop band, i.e. order of the filter, is electronically adjustable in range between 1 and 2. Also pole frequency can be electronically controlled independently with respect to other tuned parameters. Moreover, particular type of approximation can be also controlled electronically. This feature set is available both for FLPF and FHPF type of response. Presented structure of the filter is based on well-known follow-the-leader feedback (FLF) topology adjusted in our case for utilization with just simple active elements operational transconductance amplifiers (OTAs) and adjustable current amplifiers (ACAs), both providing possibility to control its key parameter electronically. Paper explains how reconfigurable 3rd-order FLF topology is used in order to approximate both FLPF and FHPF in concerned frequency band of interest. Design is supported by PSpice simulations for three particular values of order of the filter (1.25, 1.5, 1.75), for several values of pole frequency and for two particular types of approximation forming the shape of both the magnitude and phase response. Moreover, theoretical presumptions are successfully confirmed by laboratory measurements with prepared prototype based on behavioral modeling.

Description

Citation

JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS. 2017, vol. 26, issue 10, p. 1750157-1-1750157-21.
http://www.worldscientific.com/doi/abs/10.1142/S0218126617501572

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO