Silver Nanoparticle-Decorated Reduced Graphene Oxide Nanomaterials Exert Membrane Stress and Induce Immune Response to Inhibit the Early Phase of HIV-1 Infection

dc.contributor.authorMukherjee, Soumajitcs
dc.contributor.authorBytešníková, Zuzanacs
dc.contributor.authorMartin, Sophiecs
dc.contributor.authorŠvec, Pavelcs
dc.contributor.authorRidošková, Andreacs
dc.contributor.authorPekárková, Janacs
dc.contributor.authorSeguin, Cendrinecs
dc.contributor.authorWeickert, Jean-Luccs
dc.contributor.authorMesaddeq, Nadiacs
dc.contributor.authorMély, Yvescs
dc.contributor.authorRichtera, Lukášcs
dc.contributor.authorAnton, Halinacs
dc.contributor.authorAdam, Vojtěchcs
dc.coverage.issue6cs
dc.coverage.volume10cs
dc.date.accessioned2023-08-04T15:01:08Z
dc.date.available2023-08-04T15:01:08Z
dc.date.issued2023-02-01cs
dc.description.abstractGraphene-based 2D nanomaterials exhibit unique physicochemical, electric, and optical properties that facilitate applications in a wide range of fields including material science, electronics, and biotechnology. Recent studies have shown that graphene oxide (GO) and reduced graphene oxide (rGO) exhibit antimicrobial effects on bacteria and viruses. While the bactericidal activity of graphene-based nanomaterials is related to mechanical and oxidative damage to bacterial membranes, their antiviral activity has been less explored. Currently available experimental data are limited and suggest mechanical disruption of viral particles prior to infection. In this study, the antiviral properties of reduced GO-based nanocomposites decorated with Ag nanoparticles (rGO-Ag) are evidenced against human immunodeficiency virus-1 pseudovirus used as an enveloped virus model. By combining biochemical and original single virus imaging approaches, it is shown that rGO-Ag induces peroxidation of pseudoviral lipid membrane and that consequent alteration of membrane properties leads to a reduction in cell entry. In addition, rGO-Ag is found to be efficiently internalized in the host cell leading to the elevated expression of pro-inflammatory cytokines. Altogether, the presented results shed new light on the mechanisms of rGO-Ag antiviral properties and confirm the high potential of graphene derivatives as an antimicrobial material for biomedical applications.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Materials Interfaces. 2023, vol. 10, issue 6, p. 1-15.en
dc.identifier.doi10.1002/admi.202201996cs
dc.identifier.issn2196-7350cs
dc.identifier.orcid0000-0001-9705-1565cs
dc.identifier.orcid0000-0002-8288-3999cs
dc.identifier.orcid0000-0002-8527-286Xcs
dc.identifier.other182384cs
dc.identifier.researcheridAAC-4938-2019cs
dc.identifier.researcheridN-9991-2014cs
dc.identifier.researcheridD-7686-2012cs
dc.identifier.scopus12038858000cs
dc.identifier.scopus12040049600cs
dc.identifier.urihttp://hdl.handle.net/11012/213719
dc.language.isoencs
dc.publisherWILEYcs
dc.relation.ispartofAdvanced Materials Interfacescs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/admi.202201996cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2196-7350/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectantiviral activityen
dc.subjectgraphene oxideen
dc.subjecthuman immunodeficiency virus-1en
dc.subjectimmune responseen
dc.subjectlipid peroxidationen
dc.subjectsilver nanoparticlesen
dc.titleSilver Nanoparticle-Decorated Reduced Graphene Oxide Nanomaterials Exert Membrane Stress and Induce Immune Response to Inhibit the Early Phase of HIV-1 Infectionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-182384en
sync.item.dbtypeVAVen
sync.item.insts2023.09.27 16:54:07en
sync.item.modts2023.09.27 16:14:57en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Laserová spektroskopiecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022Mukherjee.pdf
Size:
6.03 MB
Format:
Adobe Portable Document Format
Description:
2022Mukherjee.pdf