Silver Nanoparticle-Decorated Reduced Graphene Oxide Nanomaterials Exert Membrane Stress and Induce Immune Response to Inhibit the Early Phase of HIV-1 Infection

Loading...
Thumbnail Image

Authors

Mukherjee, Soumajit
Bytešníková, Zuzana
Martin, Sophie
Švec, Pavel
Ridošková, Andrea
Pekárková, Jana
Seguin, Cendrine
Weickert, Jean-Luc
Mesaddeq, Nadia
Mély, Yves

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

WILEY
Altmetrics

Abstract

Graphene-based 2D nanomaterials exhibit unique physicochemical, electric, and optical properties that facilitate applications in a wide range of fields including material science, electronics, and biotechnology. Recent studies have shown that graphene oxide (GO) and reduced graphene oxide (rGO) exhibit antimicrobial effects on bacteria and viruses. While the bactericidal activity of graphene-based nanomaterials is related to mechanical and oxidative damage to bacterial membranes, their antiviral activity has been less explored. Currently available experimental data are limited and suggest mechanical disruption of viral particles prior to infection. In this study, the antiviral properties of reduced GO-based nanocomposites decorated with Ag nanoparticles (rGO-Ag) are evidenced against human immunodeficiency virus-1 pseudovirus used as an enveloped virus model. By combining biochemical and original single virus imaging approaches, it is shown that rGO-Ag induces peroxidation of pseudoviral lipid membrane and that consequent alteration of membrane properties leads to a reduction in cell entry. In addition, rGO-Ag is found to be efficiently internalized in the host cell leading to the elevated expression of pro-inflammatory cytokines. Altogether, the presented results shed new light on the mechanisms of rGO-Ag antiviral properties and confirm the high potential of graphene derivatives as an antimicrobial material for biomedical applications.
Graphene-based 2D nanomaterials exhibit unique physicochemical, electric, and optical properties that facilitate applications in a wide range of fields including material science, electronics, and biotechnology. Recent studies have shown that graphene oxide (GO) and reduced graphene oxide (rGO) exhibit antimicrobial effects on bacteria and viruses. While the bactericidal activity of graphene-based nanomaterials is related to mechanical and oxidative damage to bacterial membranes, their antiviral activity has been less explored. Currently available experimental data are limited and suggest mechanical disruption of viral particles prior to infection. In this study, the antiviral properties of reduced GO-based nanocomposites decorated with Ag nanoparticles (rGO-Ag) are evidenced against human immunodeficiency virus-1 pseudovirus used as an enveloped virus model. By combining biochemical and original single virus imaging approaches, it is shown that rGO-Ag induces peroxidation of pseudoviral lipid membrane and that consequent alteration of membrane properties leads to a reduction in cell entry. In addition, rGO-Ag is found to be efficiently internalized in the host cell leading to the elevated expression of pro-inflammatory cytokines. Altogether, the presented results shed new light on the mechanisms of rGO-Ag antiviral properties and confirm the high potential of graphene derivatives as an antimicrobial material for biomedical applications.

Description

Citation

Advanced Materials Interfaces. 2023, vol. 10, issue 6, p. 1-15.
https://onlinelibrary.wiley.com/doi/10.1002/admi.202201996

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO