Field Ion Microscopy of Tungsten Nano-Tips Coated with Thin Layer of the EpoxyResin

Loading...
Thumbnail Image

Authors

Sobola, Dinara
Alsoud, Ammar
Knápek, Alexandr
Mousa, Marwan
Schubert, Richard
Neubauerová, Pavla
Škarvada, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Preprints.org
Altmetrics

Abstract

This paper reports results of analysis of field ion emission mechanism from tungstenepoxy composite emitters that are compared to tungsten nanofield emitters. In this context, the mechanism of emission from this type of emitters is described based on a theory of induced conductive channels. The tungsten emitters were prepared using the electrochemical polishing technique and coated with a layer of the epoxy resin. Field ion microscope (FIM) analyses are reported including the study of the emissionion density distributions from both the uncoated and coated emitters. Two forms of emission patterns have been observed in the ion emission microscopy technique describing the differences in the emission mechanism of both types of emitters. The observed results show: (a) the expected crystalline surface atomic distribution images of the field ion microscopy in the case of uncoated tungsten tips, and (b) randomly distributed emission spots that describe the locations of the induced conductive channels inside the resin coating layer.
This paper reports results of analysis of field ion emission mechanism from tungstenepoxy composite emitters that are compared to tungsten nanofield emitters. In this context, the mechanism of emission from this type of emitters is described based on a theory of induced conductive channels. The tungsten emitters were prepared using the electrochemical polishing technique and coated with a layer of the epoxy resin. Field ion microscope (FIM) analyses are reported including the study of the emissionion density distributions from both the uncoated and coated emitters. Two forms of emission patterns have been observed in the ion emission microscopy technique describing the differences in the emission mechanism of both types of emitters. The observed results show: (a) the expected crystalline surface atomic distribution images of the field ion microscopy in the case of uncoated tungsten tips, and (b) randomly distributed emission spots that describe the locations of the induced conductive channels inside the resin coating layer.

Description

Document type

Document version

submittedVersion

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO