Gabor frames and deep scattering networks in audio processing
dc.contributor.author | Bammer, Roswitha | cs |
dc.contributor.author | Dörfler, Monika | cs |
dc.contributor.author | Harár, Pavol | cs |
dc.coverage.issue | 4 | cs |
dc.coverage.volume | 8 | cs |
dc.date.accessioned | 2020-08-18T10:57:48Z | |
dc.date.available | 2020-08-18T10:57:48Z | |
dc.date.issued | 2019-09-26 | cs |
dc.description.abstract | This paper introduces Gabor scattering, a feature extractor based on Gabor frames and Mallat's scattering transform. By using a simple signal model for audio signals specific properties of Gabor scattering are studied. It is shown that for each layer, specific invariances to certain signal characteristics occur. Furthermore, deformation stability of the coefficient vector generated by the feature extractor is derived by using a decoupling technique which exploits the contractivity of general scattering networks. Deformations are introduced as changes in spectral shape and frequency modulation. The theoretical results are illustrated by numerical examples and experiments. Numerical evidence is given by evaluation on a synthetic and a "real" data set, that the invariances encoded by the Gabor scattering transform lead to higher performance in comparison with just using Gabor transform, especially when few training samples are available. | en |
dc.format | text | cs |
dc.format.extent | 1-25 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Axioms. 2019, vol. 8, issue 4, p. 1-25. | en |
dc.identifier.doi | 10.3390/axioms8040106 | cs |
dc.identifier.issn | 2075-1680 | cs |
dc.identifier.other | 159057 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/194791 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Axioms | cs |
dc.relation.uri | https://www.mdpi.com/2075-1680/8/4/106 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2075-1680/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | machine learning | en |
dc.subject | scattering transform | en |
dc.subject | Gabor transform | en |
dc.subject | deep learning | en |
dc.subject | time-frequency analysis | en |
dc.subject | CNN | en |
dc.title | Gabor frames and deep scattering networks in audio processing | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-159057 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.08.18 12:57:47 | en |
sync.item.modts | 2020.08.18 12:15:28 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. oddělení-TKO-SIX | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- axioms0800106v2.pdf
- Size:
- 1.88 MB
- Format:
- Adobe Portable Document Format
- Description:
- axioms0800106v2.pdf