Gabor frames and deep scattering networks in audio processing

Loading...
Thumbnail Image

Authors

Bammer, Roswitha
Dörfler, Monika
Harár, Pavol

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This paper introduces Gabor scattering, a feature extractor based on Gabor frames and Mallat's scattering transform. By using a simple signal model for audio signals specific properties of Gabor scattering are studied. It is shown that for each layer, specific invariances to certain signal characteristics occur. Furthermore, deformation stability of the coefficient vector generated by the feature extractor is derived by using a decoupling technique which exploits the contractivity of general scattering networks. Deformations are introduced as changes in spectral shape and frequency modulation. The theoretical results are illustrated by numerical examples and experiments. Numerical evidence is given by evaluation on a synthetic and a "real" data set, that the invariances encoded by the Gabor scattering transform lead to higher performance in comparison with just using Gabor transform, especially when few training samples are available.
This paper introduces Gabor scattering, a feature extractor based on Gabor frames and Mallat's scattering transform. By using a simple signal model for audio signals specific properties of Gabor scattering are studied. It is shown that for each layer, specific invariances to certain signal characteristics occur. Furthermore, deformation stability of the coefficient vector generated by the feature extractor is derived by using a decoupling technique which exploits the contractivity of general scattering networks. Deformations are introduced as changes in spectral shape and frequency modulation. The theoretical results are illustrated by numerical examples and experiments. Numerical evidence is given by evaluation on a synthetic and a "real" data set, that the invariances encoded by the Gabor scattering transform lead to higher performance in comparison with just using Gabor transform, especially when few training samples are available.

Description

Citation

Axioms. 2019, vol. 8, issue 4, p. 1-25.
https://www.mdpi.com/2075-1680/8/4/106

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO