Seasonal synchronization and unpredictability in epidemic models with waning immunity and healthcare thresholds

Loading...
Thumbnail Image

Authors

Eclerová, Veronika
Sen, Deeptajyoti
Přibylová, Lenka

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

NATURE PORTFOLIO

ORCID

Altmetrics

Abstract

This paper explores a model integrating healthcare capacity thresholds and seasonal effects to investigate the synchronization of epidemic cycles with seasonal transmission rates, using parameters reflective of the COVID-19 pandemic. Through bifurcation analysis in the epi-seasonal domain, we identify regions of significant seasonal synchronization related to transmission rate fluctuations, waning immunity, and healthcare capacity thresholds. The model highlights four sources of unpredictability: chaotic regimes, quasiperiodicity, proximity to SNIC or transcritical bifurcations, and bistability. Our findings reveal that chaotic regimes are more predictable than quasiperiodic regimes in epidemiological terms. Synchronizing outbreaks with seasonal cycles, even in chaotic regimes, predominantly results in significant winter outbreaks. Conversely, quasiperiodicity allows outbreaks to occur at any time of the year. Near eradication unpredictability aligns with historical pertussis data, underscoring the model’s relevance to real-world epidemics and vaccine schedules. Additionally, we identify a bistability region with potential for abrupt shifts in disease prevalence, triggered by superspreading events or migration.
This paper explores a model integrating healthcare capacity thresholds and seasonal effects to investigate the synchronization of epidemic cycles with seasonal transmission rates, using parameters reflective of the COVID-19 pandemic. Through bifurcation analysis in the epi-seasonal domain, we identify regions of significant seasonal synchronization related to transmission rate fluctuations, waning immunity, and healthcare capacity thresholds. The model highlights four sources of unpredictability: chaotic regimes, quasiperiodicity, proximity to SNIC or transcritical bifurcations, and bistability. Our findings reveal that chaotic regimes are more predictable than quasiperiodic regimes in epidemiological terms. Synchronizing outbreaks with seasonal cycles, even in chaotic regimes, predominantly results in significant winter outbreaks. Conversely, quasiperiodicity allows outbreaks to occur at any time of the year. Near eradication unpredictability aligns with historical pertussis data, underscoring the model’s relevance to real-world epidemics and vaccine schedules. Additionally, we identify a bistability region with potential for abrupt shifts in disease prevalence, triggered by superspreading events or migration.

Description

Citation

Scientific Reports. 2025, vol. 15, issue 5, p. 1-20.
https://www.nature.com/articles/s41598-025-01467-4

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO