Deposition penetration depth and sticking probability in plasma polymerization of cyclopropylamine

dc.contributor.authorMichlíček, Miroslavcs
dc.contributor.authorBlahová, Luciecs
dc.contributor.authorDvořáková, Evacs
dc.contributor.authorNečas, Davidcs
dc.contributor.authorZajíčková, Lenkacs
dc.coverage.issue1cs
dc.coverage.volume540cs
dc.date.accessioned2021-12-14T11:55:09Z
dc.date.available2021-12-14T11:55:09Z
dc.date.issued2021-02-02cs
dc.description.abstractUnderstanding the role of substrate geometry is vital for a successful optimization of low-pressure plasma polymerization on non-planar substrates used in bioapplications, such as porous materials or well plates. We investigated the altered transport of film-forming species and properties of the coatings for a cyclopropylamine and argon discharge using a combined analysis of the plasma polymer deposition on flat Si pieces, culture wells, microtrenches, a macrocavity, porous hydroxyapatite scaffolds and electrospun polycaprolactone nanofibrous mats. The aspect ratio of the well structures impacted mainly the deposition rate, whereas the film chemistry was affected only moderately. A large deposition penetration depth into the porous media indicated a relatively low sticking probability of film-forming species. A detailed analysis of microtrench step coverage and macrocavity deposition disproved the model of film-forming species with a single overall sticking probability. At least two populations with two different sticking probabilities were required to fit the experimental data. A majority of the film-forming species (76%) has a large sticking probability of 0.20 +/- 0.01, while still a significant part (24%) has a relatively small sticking probability of 0.0015 +/- 0.0002. The presented methodology is widely applicable for understanding the details of plasma-surface interaction and successful applications of plasma polymerization onto complex substrates.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAPPLIED SURFACE SCIENCE. 2021, vol. 540, issue 1, p. 1-10.en
dc.identifier.doi10.1016/j.apsusc.2020.147979cs
dc.identifier.issn1873-5584cs
dc.identifier.other174113cs
dc.identifier.urihttp://hdl.handle.net/11012/203198
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofAPPLIED SURFACE SCIENCEcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0169433220327367?via%3Dihubcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-5584/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPlasma polymerizationen
dc.subject3D structured substratesen
dc.subjectBioactive functional coatingen
dc.subjectPenetration depthen
dc.subjectSticking probabilityen
dc.titleDeposition penetration depth and sticking probability in plasma polymerization of cyclopropylamineen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-174113en
sync.item.dbtypeVAVen
sync.item.insts2021.12.14 12:55:08en
sync.item.modts2021.12.14 12:16:34en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Vývoj metod analýzy a měřenícs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav teoretické a experimentální elektrotechnikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0169433220327367main.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S0169433220327367main.pdf