Deposition penetration depth and sticking probability in plasma polymerization of cyclopropylamine

dc.contributor.authorMichlíček, Miroslavcs
dc.contributor.authorJanů, Luciecs
dc.contributor.authorDvořáková, Evacs
dc.contributor.authorNečas, Davidcs
dc.contributor.authorZajíčková, Lenkacs
dc.coverage.issue1cs
dc.coverage.volume540cs
dc.date.issued2021-02-02cs
dc.description.abstractUnderstanding the role of substrate geometry is vital for a successful optimization of low-pressure plasma polymerization on non-planar substrates used in bioapplications, such as porous materials or well plates. We investigated the altered transport of film-forming species and properties of the coatings for a cyclopropylamine and argon discharge using a combined analysis of the plasma polymer deposition on flat Si pieces, culture wells, microtrenches, a macrocavity, porous hydroxyapatite scaffolds and electrospun polycaprolactone nanofibrous mats. The aspect ratio of the well structures impacted mainly the deposition rate, whereas the film chemistry was affected only moderately. A large deposition penetration depth into the porous media indicated a relatively low sticking probability of film-forming species. A detailed analysis of microtrench step coverage and macrocavity deposition disproved the model of film-forming species with a single overall sticking probability. At least two populations with two different sticking probabilities were required to fit the experimental data. A majority of the film-forming species (76%) has a large sticking probability of 0.20 +/- 0.01, while still a significant part (24%) has a relatively small sticking probability of 0.0015 +/- 0.0002. The presented methodology is widely applicable for understanding the details of plasma-surface interaction and successful applications of plasma polymerization onto complex substrates.en
dc.description.abstractUnderstanding the role of substrate geometry is vital for a successful optimization of low-pressure plasma polymerization on non-planar substrates used in bioapplications, such as porous materials or well plates. We investigated the altered transport of film-forming species and properties of the coatings for a cyclopropylamine and argon discharge using a combined analysis of the plasma polymer deposition on flat Si pieces, culture wells, microtrenches, a macrocavity, porous hydroxyapatite scaffolds and electrospun polycaprolactone nanofibrous mats. The aspect ratio of the well structures impacted mainly the deposition rate, whereas the film chemistry was affected only moderately. A large deposition penetration depth into the porous media indicated a relatively low sticking probability of film-forming species. A detailed analysis of microtrench step coverage and macrocavity deposition disproved the model of film-forming species with a single overall sticking probability. At least two populations with two different sticking probabilities were required to fit the experimental data. A majority of the film-forming species (76%) has a large sticking probability of 0.20 +/- 0.01, while still a significant part (24%) has a relatively small sticking probability of 0.0015 +/- 0.0002. The presented methodology is widely applicable for understanding the details of plasma-surface interaction and successful applications of plasma polymerization onto complex substrates.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAPPLIED SURFACE SCIENCE. 2021, vol. 540, issue 1, p. 1-10.en
dc.identifier.doi10.1016/j.apsusc.2020.147979cs
dc.identifier.issn0169-4332cs
dc.identifier.orcid0000-0002-6298-2228cs
dc.identifier.orcid0000-0001-7731-8453cs
dc.identifier.orcid0000-0002-6906-8906cs
dc.identifier.other174113cs
dc.identifier.researcheridAAD-5562-2022cs
dc.identifier.researcheridD-7166-2012cs
dc.identifier.researcheridE-3010-2012cs
dc.identifier.scopus22933742100cs
dc.identifier.urihttp://hdl.handle.net/11012/203198
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofAPPLIED SURFACE SCIENCEcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0169433220327367?via%3Dihubcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0169-4332/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPlasma polymerizationen
dc.subject3D structured substratesen
dc.subjectBioactive functional coatingen
dc.subjectPenetration depthen
dc.subjectSticking probabilityen
dc.subjectPlasma polymerization
dc.subject3D structured substrates
dc.subjectBioactive functional coating
dc.subjectPenetration depth
dc.subjectSticking probability
dc.titleDeposition penetration depth and sticking probability in plasma polymerization of cyclopropylamineen
dc.title.alternativeDeposition penetration depth and sticking probability in plasma polymerization of cyclopropylamineen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-174113en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:13:01en
sync.item.modts2025.10.14 10:32:23en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav teoretické a experimentální elektrotechnikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Vývoj metod analýzy a měřenícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0169433220327367main.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S0169433220327367main.pdf