Towards efficient waste management: identification of waste flow chains in micro-regional detail through monitored data

dc.contributor.authorNěmcová, Luciecs
dc.contributor.authorPluskal, Jaroslavcs
dc.contributor.authorŠomplák, Radovancs
dc.contributor.authorKůdela, Jakubcs
dc.coverage.issue1cs
dc.coverage.volume26cs
dc.date.accessioned2025-06-16T13:55:58Z
dc.date.available2025-06-16T13:55:58Z
dc.date.issued2024-06-18cs
dc.description.abstractCountries around the world are gradually implementing the transition to a circular economy in waste management. This effort should be initiated already at the waste producers. It is necessary to plan and monitor waste management in as much detail as possible, i.e. at the level of micro-regions. At present, only indicators at the national level are analysed, as more detailed data at the micro-regional level are often not available or are burdened with significant errors and inconsistencies. The calculation of waste management indicators for micro-regions will allow to identify the potential for increasing material or energy recovery and to plan the necessary infrastructure directly to these locations instead of blanket and often ineffective legislative actions. This paper presents an approach for determining the producer-treatment linkage, i.e., provides information about each produced waste, where it was treated, and in what way. Such information is often not available based on historical waste management data as there are repeated waste transfers and often aggregated within a micro-region. The network flow approach is based on an iterative procedure combining a simulation with multi-criteria optimization. The chosen criteria replicate expert estimates in investigated issue such as minimum flow splitting, and minimum transfer micro-regions. A data reconciliation is performed where the deviation from all simulations is minimized, given that the capacity constraints of nodes and arcs resulting from the database must be satisfied. The approach is tested on a generated sample task to evaluate the precision and time complexity of the developed tool. Finally, the presented approach is applied to address a case study in the Czech Republic, within which it is possible to identify treatment location and methods for waste from individual regions.en
dc.formattextcs
dc.format.extent805-826cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationOPTIMIZATION AND ENGINEERING. 2024, vol. 26, issue 1, p. 805-826.en
dc.identifier.doi10.1007/s11081-024-09897-1cs
dc.identifier.issn1389-4420cs
dc.identifier.orcid0009-0006-5742-0382cs
dc.identifier.orcid0000-0002-2658-7490cs
dc.identifier.orcid0000-0002-5714-4537cs
dc.identifier.orcid0000-0002-4372-2105cs
dc.identifier.other189057cs
dc.identifier.researcheridQ-9462-2017cs
dc.identifier.researcheridP-7327-2018cs
dc.identifier.scopus57212244833cs
dc.identifier.scopus55515602000cs
dc.identifier.scopus56769626500cs
dc.identifier.urihttps://hdl.handle.net/11012/252550
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofOPTIMIZATION AND ENGINEERINGcs
dc.relation.urihttps://link.springer.com/article/10.1007/s11081-024-09897-1cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1389-4420/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectWaste flowen
dc.subjectData reconciliationen
dc.subjectMulti-criteria optimizationen
dc.subjectIterative evaluationen
dc.subjectWaste indicatorsen
dc.titleTowards efficient waste management: identification of waste flow chains in micro-regional detail through monitored dataen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189057en
sync.item.dbtypeVAVen
sync.item.insts2025.06.16 15:55:58en
sync.item.modts2025.06.16 15:33:09en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav procesního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11081024098971.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
file s11081024098971.pdf