Spark plasma extrusion of binder free hydroxyapatite powder

dc.contributor.authorDíaz de la Torre, Sebastiancs
dc.contributor.authorMunoz-Juarez, Isaaccs
dc.contributor.authorMendez-Garcia, Jose C.cs
dc.contributor.authorGonzalez-Corral, Giselacs
dc.contributor.authorCasas Luna, Marianocs
dc.contributor.authorMontufar Jimenez, Edgar Benjamincs
dc.contributor.authorOliver Urrutia, Carolinacs
dc.contributor.authorPina-Barba, Maria Cristinacs
dc.contributor.authorČelko, Ladislavcs
dc.coverage.issue1cs
dc.coverage.volume11cs
dc.date.accessioned2022-07-13T10:52:34Z
dc.date.available2022-07-13T10:52:34Z
dc.date.issued2022-06-17cs
dc.description.abstractThis work explores the possibility of manufacturing dense and nanocrystalline hydroxyapatite (HA) large monoliths by spark plasma extrusion (SPE). This method combines uniaxial mechanical compression, high temperature, and electromagnetic field to promote the extrusion and sintering of HA powder in one single step. The results show that the binder-free extrusion of pre-compacted HA powder is feasible at a temperature similar to the temperature at which nanocrystalline HA shows superplastic behavior. The extrusion continues throughout the sliding and rotation of the particles, and also due to the grain boundary sliding, up to the point where no more material is available, thus producing monoliths of nearly 30 mm in length and 10 mm in diameter. The dehydration and smooth surface of the powder appear as paramount factors to facilitate the HA extrusion without additives. The extruded HA preserved the stoichiometry and nanometric grain size and exhibited preferential microstructural alignment in the direction of extrusion. The material experiences local thermal and pressure gradients during extrusion, producing different densification and hardness along its length. The SPE of HA will benefit the healthcare field by offering new processing approaches of bone substitutes and osteosynthesis devices.en
dc.formattextcs
dc.format.extent2295-2303cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNanotechnology Reviews. 2022, vol. 11, issue 1, p. 2295-2303.en
dc.identifier.doi10.1515/ntrev-2022-0131cs
dc.identifier.issn2191-9089cs
dc.identifier.other178433cs
dc.identifier.urihttp://hdl.handle.net/11012/208174
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofNanotechnology Reviewscs
dc.relation.urihttps://www.degruyter.com/document/doi/10.1515/ntrev-2022-0131/htmlcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2191-9089/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecthydroxyapatiteen
dc.subjectspark plasma extrusionen
dc.subjectsinteringen
dc.subjectnanocrystallineen
dc.subjectsuperplasticityen
dc.subjectgrain boundary slidingen
dc.subjectspark plasma sinteringen
dc.titleSpark plasma extrusion of binder free hydroxyapatite powderen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-178433en
sync.item.dbtypeVAVen
sync.item.insts2023.02.20 12:50:56en
sync.item.modts2023.02.20 12:12:39en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515_ntrev20220131.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
10.1515_ntrev20220131.pdf