Fade Depth Prediction Using Human Presence for Real Life WSN Deployment

dc.contributor.authorHorvat, Goran
dc.contributor.authorRimac-Drlje, Snjezana
dc.contributor.authorZagar, Drago
dc.coverage.issue3cs
dc.coverage.volume22cs
dc.date.accessioned2015-01-21T11:47:01Z
dc.date.available2015-01-21T11:47:01Z
dc.date.issued2013-09cs
dc.description.abstractCurrent problem in real life WSN deployment is determining fade depth in indoor propagation scenario for link power budget analysis using (fade margin parameter). Due to the fact that human presence impacts the performance of wireless networks, this paper proposes a statistical approach for shadow fading prediction using various real life parameters. Considered parameters within this paper include statistically mapped human presence and the number of people through time compared to the received signal strength. This paper proposes an empirical model fade depth prediction model derived from a comprehensive set of measured data in indoor propagation scenario. It is shown that the measured fade depth has high correlations with the number of people in non-line-of-sight condition, giving a solid foundation for the fade depth prediction model. In line-of-sight conditions this correlations is significantly lower. By using the proposed model in real life deployment scenarios of WSNs, the data loss and power consumption can be reduced by the means of intelligently planning and designing Wireless Sensor Network.en
dc.formattextcs
dc.format.extent758-768cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2013, vol. 22, č. 3, s. 758-768. issn 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/36926
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2013/13_03_0758_0768.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectFade depth predictionen
dc.subjecthuman presenceen
dc.subjecthuman densityen
dc.subjectreceived strength signal indicatoren
dc.subjectwireless sensor networksen
dc.subjectZigBeeen
dc.titleFade Depth Prediction Using Human Presence for Real Life WSN Deploymenten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13_03_0758_0768.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections