Optimizing Flying Base Station Connectivity by RAN Slicing and Reinforcement Learning
dc.contributor.author | Melgarejo, Dick Carrillo | cs |
dc.contributor.author | Pokorný, Jiří | cs |
dc.contributor.author | Šeda, Pavel | cs |
dc.contributor.author | Narayanan, Arun | cs |
dc.contributor.author | Nardelli, Pedro Henrique Juliano | cs |
dc.contributor.author | Rasti, Mehdi | cs |
dc.contributor.author | Hošek, Jiří | cs |
dc.contributor.author | Šeda, Miloš | cs |
dc.contributor.author | Rodríguez, Demóstenes Zegarra | cs |
dc.contributor.author | Koucheryavy, Yevgeni | cs |
dc.contributor.author | Fraidenraich, Gustavo | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 10 | cs |
dc.date.accessioned | 2022-07-01T10:52:27Z | |
dc.date.available | 2022-07-01T10:52:27Z | |
dc.date.issued | 2022-05-17 | cs |
dc.description.abstract | The application of flying base stations (FBS) in wireless communication is becoming a key enabler to improve cellular wireless connectivity. Following this tendency, this research work aims to enhance the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization considers that FBSs’ location was already defined previously. This framework splits the physical radio resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the proposed framework generally outperforms the spectral efficiency of the network that only considers the heuristic predefined FBS location, although the gains are not always significant in some specific cases. Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level agreement (SLA) to indicate the performance of the framework. | en |
dc.format | text | cs |
dc.format.extent | 53746-53760 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IEEE Access. 2022, vol. 10, issue 1, p. 53746-53760. | en |
dc.identifier.doi | 10.1109/ACCESS.2022.3175487 | cs |
dc.identifier.issn | 2169-3536 | cs |
dc.identifier.other | 177853 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/208143 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | IEEE Access | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/9775679 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2169-3536/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Flying Base Stations | en |
dc.subject | UAVs | en |
dc.subject | Location Optimization | en |
dc.subject | Wireless Communication | en |
dc.subject | Deep-reinforcement Learning | en |
dc.title | Optimizing Flying Base Station Connectivity by RAN Slicing and Reinforcement Learning | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-177853 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2022.09.16 16:50:28 | en |
sync.item.modts | 2022.09.16 16:16:26 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Optimizing_Flying_Base_Station_Connectivity_by_RAN_Slicing_and_Reinforcement_Learning.pdf
- Size:
- 3.66 MB
- Format:
- Adobe Portable Document Format
- Description:
- Optimizing_Flying_Base_Station_Connectivity_by_RAN_Slicing_and_Reinforcement_Learning.pdf