Direct measurement of oxygen reduction reactions at neurostimulation electrodes

dc.contributor.authorEhlich, Jiřícs
dc.contributor.authorMigliaccio, Ludovicocs
dc.contributor.authorSahalianov, Ihorcs
dc.contributor.authorNikić, Martacs
dc.contributor.authorBrodský, Jancs
dc.contributor.authorGablech, Imrichcs
dc.contributor.authorVu, Xuan Thangcs
dc.contributor.authorIngebrandt, Svencs
dc.contributor.authorGlowacki, Eric Danielcs
dc.coverage.issue3cs
dc.coverage.volume19cs
dc.date.accessioned2023-10-02T10:53:00Z
dc.date.available2023-10-02T10:53:00Z
dc.date.issued2022-06-01cs
dc.description.abstractObjective. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols. Approach. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the O-2 and H2O2 concentrations in the vicinity of the electrode surface. O-2 and H2O2 concentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30 mu C cm(-2)/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of O-2 and H2O2. Main results. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce H2O2 as a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range. Significance. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in O-2 concentrations. Hypoxia and H2O2 can result in different (electro)physiological consequences.en
dc.formattextcs
dc.format.extent036045-cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Neural Engineering. 2022, vol. 19, issue 3, p. 036045-.en
dc.identifier.doi10.1088/1741-2552/ac77c0cs
dc.identifier.issn1741-2552cs
dc.identifier.orcid0000-0003-0478-6875cs
dc.identifier.orcid0000-0002-5656-3158cs
dc.identifier.orcid0000-0003-4218-1287cs
dc.identifier.orcid0000-0002-0280-8017cs
dc.identifier.other179261cs
dc.identifier.researcheridGYJ-6288-2022cs
dc.identifier.researcheridH-7835-2016cs
dc.identifier.scopus57212587388cs
dc.identifier.scopus55091127400cs
dc.identifier.urihttp://hdl.handle.net/11012/214125
dc.language.isoencs
dc.publisherIOP Publishing Ltdcs
dc.relation.ispartofJournal of Neural Engineeringcs
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1741-2552/ac77c0cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1741-2552/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbioelectronicsen
dc.subjectneurostimulationen
dc.subjectfaradaic reactionsen
dc.subjecthypoxiaen
dc.subjectreactive oxygen speciesen
dc.titleDirect measurement of oxygen reduction reactions at neurostimulation electrodesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-179261en
sync.item.dbtypeVAVen
sync.item.insts2023.10.02 12:53:00en
sync.item.modts2023.10.02 12:14:28en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Bioelektronické materiály a systémycs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Chytré nanonástrojecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ehlich_2022_J._Neural_Eng._19_036045.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Description:
Ehlich_2022_J._Neural_Eng._19_036045.pdf