All-Pass Time Delay Circuit Magnitude Response Optimization Using Fractional-Order Capacitor

Loading...
Thumbnail Image

Authors

Herencsár, Norbert
Kartci, Aslihan
Tlelo-Cuautle, Esteban
Metin, Bilgin
Cicekoglu, Oguzhan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Paper presents the integer- and fractional-order cases of a voltage-mode all-pass time delay circuit, or more frequently called as all-pass filter, employing a single negative-type current-controlled current inverting transconductance amplifier and a floating capacitor. Utilization of a fractional-order capacitor (FoC) C0,06 with 12 pF " sec.04 value for magnitude response optimization of the filter is investigated. FoC was emulated via 4th-order Valsa RC network and values optimized using modified least squares quadratic method. In frequency range MHz-I GlIz it shows only +0.5 degree phase angle deviation and the relative pseudo-capacitance error varies from-1.85% to +0.73%. SPICE simulations are given to prove the theory.
Paper presents the integer- and fractional-order cases of a voltage-mode all-pass time delay circuit, or more frequently called as all-pass filter, employing a single negative-type current-controlled current inverting transconductance amplifier and a floating capacitor. Utilization of a fractional-order capacitor (FoC) C0,06 with 12 pF " sec.04 value for magnitude response optimization of the filter is investigated. FoC was emulated via 4th-order Valsa RC network and values optimized using modified least squares quadratic method. In frequency range MHz-I GlIz it shows only +0.5 degree phase angle deviation and the relative pseudo-capacitance error varies from-1.85% to +0.73%. SPICE simulations are given to prove the theory.

Description

Citation

Proceedings of the 2018 61st IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). 2018, p. 129-132.
https://ieeexplore.ieee.org/document/8624059

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO