Slabě zpožděné systémy lineárních diskrétních rovnic v R^3

Abstract

Dizertační práce se zabývá konstrukcí obecného řešení slabě zpožděných systémů lineárních diskrétních rovnic v ${\mathbb R}^3$ tvaru \begin{equation*} x(k+1)=Ax(k)+Bx(k-m), \end{equation*} kde $m>0$ je kladné celé číslo, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ a $B=(b_{ij})$ jsou konstantní $3\times 3$ matice. Charakteristické rovnice těchto systémů jsou identické s charakteristickými rovnicemi systému, který neobsahuje zpožděné členy. Jsou získána kriteria garantující, že daný systém je slabě zpožděný a následně jsou tato kritéria specifikována pro všechny možné případy Jordanova tvaru matice $A$. Systém je vyřešen pomocí metody, která ho transformuje na systém vyšší dimenze, ale bez zpoždění \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} kde ${\mathrm{dim}}\ y = 3(m+1)$. Pomocí metod lineární algebry je možné najít Jordanovy formy matice $\mathcal{A}$ v závislosti na vlastních číslech matic $A$ and $B$. Tudíž lze nalézt obecné řešení nového systému a v důsledku toho pak odvodit obecné řešení počátečního systému.
The present thesis deals with the construction of a general solution of weakly delayed systems of linear discrete equations in ${\mathbb R}^3$ of the form \begin{equation*} x(k+1)=Ax(k)+Bx(k-m) \end{equation*} where $m>0$ is a positive integer, $x\colon \bZ_{-m}^{\infty}\to\bR^3$, $\bZ_{-m}^{\infty} := \{-m, -m+1, \dots, \infty\}$, $k\in\bZ_0^{\infty}$, $A=(a_{ij})$ and $B=(b_{ij})$ are constant $3\times 3$ matrices. The characteristic equations of weakly delayed systems are identical with those of the same systems but without delayed terms. The criteria ensuring that a system is weakly delayed are developed and then specified for every possible case of the Jordan form of matrix $A$. The system is solved by transforming it into a higher-dimensional system but without delays \begin{equation*} y(k+1)=\mathcal{A}y(k), \end{equation*} where ${\mathrm{dim}}\ y = 3(m+1)$. Using methods of linear algebra, it is possible to find the Jordan forms of $\mathcal{A}$ depending on the eigenvalues of matrices $A$ and $B$. Therefore, general the solution of the new system can be found and, consequently, the general solution of the initial system deduced.

Description

Citation

ŠAFAŘÍK, J. Slabě zpožděné systémy lineárních diskrétních rovnic v R^3 [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2018.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Matematika v elektroinženýrství

Comittee

prof. RNDr. Jan Chvalina, DrSc. (předseda) prof. Ing. Pavel Jura, CSc. (člen) prof. RNDr. Miroslava Růžičková, CSc. - oponent (člen) prof. Denys Khusainov, DrSc. - oponent (člen) doc. RNDr. Jaromír Baštinec, CSc. (člen) doc. RNDr. Jaroslav Beránek, CSc. (člen) doc. RNDr. Jiří Moučka, CSc. (člen)

Date of acceptance

2018-06-15

Defence

V práci byla vytvořena teorie pro nalezení analytického řešení systémů slabě zpožděných lineárních diskrétních rovnic v R^3. Výsledky jsou nové a zobecňují předchozí výsledky pro systémy v R^2. Hlavní výsledky už byly publikovány.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO