Amorphous boron nitride: synthesis, properties and device application

Abstract

Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.
Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.

Description

Citation

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO