Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces

dc.contributor.authorMayorga-Martinez, Carmen C.cs
dc.contributor.authorZelenka, Jaroslavcs
dc.contributor.authorGrmela, Jancs
dc.contributor.authorMichálková, Hanacs
dc.contributor.authorRuml, Tomášcs
dc.contributor.authorMareš, Jancs
dc.contributor.authorPumera, Martincs
dc.coverage.issue19cs
dc.coverage.volume8cs
dc.date.accessioned2021-12-06T11:51:01Z
dc.date.available2021-12-06T11:51:01Z
dc.date.issued2021-10-01cs
dc.description.abstractMicroscale self-propelled robots show great promise in the biomedical field and are the focus of many researchers. These tiny devices, which move and navigate by themselves, are typically based on inorganic microstructures that are not biodegradable and potentially toxic, often using toxic fuels or elaborate external energy sources, which limits their real-world applications. One potential solution to these issues is to go back to nature. Here, the authors use high-speed Aqua Sperm micromotors obtained from North African catfish (Clarias gariepinus, B. 1822) to destroy bacterial biofilm. These Aqua Sperm micromotors use water-induced dynein ATPase catalyzed adenosine triphosphate (ATP) degradation as biocompatible fuel to trigger their fast speed and snake-like undulatory locomotion that facilitate biofilm destruction in less than one minute. This efficient biofilm destruction is due to the ultra-fast velocity as well as the head size of Aqua Sperm micromotors being similar to bacteria, which facilitates their entry to and navigation within the biofilm matrix. In addition, the authors demonstrate the real-world application of Aqua Sperm micromotors by destroying biofilms that had colonized medical and laboratory tubing. The implemented system extends the biomedical application of Aqua Sperm micromotors to include hybrid robots for fertilization or cargo tasks.en
dc.formattextcs
dc.format.extent1-7cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Science. 2021, vol. 8, issue 19, p. 1-7.en
dc.identifier.doi10.1002/advs.202101301cs
dc.identifier.issn2198-3844cs
dc.identifier.other173173cs
dc.identifier.urihttp://hdl.handle.net/11012/203072
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofAdvanced Sciencecs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/advs.202101301cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2198-3844/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectactive bacterial biofilmsen
dc.subjectAqua Sperm micromotorsen
dc.subjectbiobotsen
dc.subjectnanorobotsen
dc.subjectspermatozoaen
dc.subjectspermbotsen
dc.titleSwarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spacesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-173173en
sync.item.dbtypeVAVen
sync.item.insts2021.12.06 12:51:01en
sync.item.modts2021.12.06 12:13:14en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Chytré nanonástrojecs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
advs.202101301.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Description:
advs.202101301.pdf