Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis
dc.contributor.author | Pořízka, Pavel | cs |
dc.contributor.author | Klus, Jakub | cs |
dc.contributor.author | Mašek, Jan | cs |
dc.contributor.author | Rajnoha, Martin | cs |
dc.contributor.author | Prochazka, David | cs |
dc.contributor.author | Modlitbová, Pavlína | cs |
dc.contributor.author | Novotný, Jan | cs |
dc.contributor.author | Burget, Radim | cs |
dc.contributor.author | Novotný, Karel | cs |
dc.contributor.author | Kaiser, Jozef | cs |
dc.coverage.issue | 3160 | cs |
dc.coverage.volume | 7 | cs |
dc.date.accessioned | 2020-08-04T10:59:53Z | |
dc.date.available | 2020-08-04T10:59:53Z | |
dc.date.issued | 2017-12-01 | cs |
dc.description.abstract | In this work, we proposed a new data acquisition approach that significantly improves the repetition rates of Laser-Induced Breakdown Spectroscopy (LIBS) experiments, where high-end echelle spectrometers and intensified detectors are commonly used. The moderate repetition rates of recent LIBS systems are caused by the utilization of intensified detectors and their slow full frame (i.e. echellogram) readout speeds with consequent necessity for echellogram-to-1D spectrum conversion (intensity vs. wavelength). Therefore, we investigated a new methodology where only the most effective pixels of the echellogram were selected and directly used in the LIBS experiments. Such data processing resulted in significant variable down-selection (more than four orders of magnitude). Samples of 50 sedimentary ores samples (distributed in 13 ore types) were analyzed by LIBS system and then classified by linear and non-linear Multivariate Data Analysis algorithms. The utilization of selected pixels from an echellogram yielded increased classification accuracy compared to the utilization of common 1D spectra. | en |
dc.format | text | cs |
dc.format.extent | 1-12 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Scientific Reports. 2017, vol. 7, issue 3160, p. 1-12. | en |
dc.identifier.doi | 10.1038/s41598-017-03426-0 | cs |
dc.identifier.issn | 2045-2322 | cs |
dc.identifier.other | 136910 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/69360 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | Scientific Reports | cs |
dc.relation.uri | https://www.nature.com/articles/s41598-017-03426-0 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2045-2322/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Analytical chemistry | en |
dc.subject | Geology | en |
dc.subject | Statistics | en |
dc.title | Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-136910 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.09.02 13:55:01 | en |
sync.item.modts | 2020.09.02 13:39:31 | en |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Charakterizace materiálů a pokročilé povlaky 1-06 | cs |
thesis.grantor | Vysoké učení technické v Brně. . AtomTrace s.r.o. | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Centrum senzorických, informačních a komunikačních systémů | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598017034260.pdf
- Size:
- 3.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- s41598017034260.pdf