Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals
| dc.contributor.author | Pešán, Jan | cs |
| dc.contributor.author | Juřík, Vojtěch | cs |
| dc.contributor.author | Růžičková, Alexandra | cs |
| dc.contributor.author | Svoboda, Vojtěch | cs |
| dc.contributor.author | Janoušek, Oto | cs |
| dc.contributor.author | Němcová, Andrea | cs |
| dc.contributor.author | Bojanovská, Hana | cs |
| dc.contributor.author | Aldabaghová, Jasmína | cs |
| dc.contributor.author | Kyslík, Filip | cs |
| dc.contributor.author | Vodičková, Kateřina | cs |
| dc.contributor.author | Sodomová, Adéla | cs |
| dc.contributor.author | Bartys, Patrik | cs |
| dc.contributor.author | Chudý, Peter | cs |
| dc.contributor.author | Černocký, Jan | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 11 | cs |
| dc.date.issued | 2024-11-12 | cs |
| dc.description.abstract | Early identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech. | en |
| dc.description.abstract | Early identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech. | en |
| dc.format | text | cs |
| dc.format.extent | 1-9 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Scientific Data. 2024, vol. 11, issue 1, p. 1-9. | en |
| dc.identifier.doi | 10.1038/s41597-024-03991-w | cs |
| dc.identifier.issn | 2052-4463 | cs |
| dc.identifier.orcid | 0000-0002-9655-1143 | cs |
| dc.identifier.orcid | 0000-0002-2207-8795 | cs |
| dc.identifier.orcid | 0000-0003-1801-7057 | cs |
| dc.identifier.orcid | 0000-0002-4539-976X | cs |
| dc.identifier.orcid | 0000-0002-8800-0210 | cs |
| dc.identifier.other | 193434 | cs |
| dc.identifier.researcherid | ABE-6835-2020 | cs |
| dc.identifier.researcherid | AAH-1590-2021 | cs |
| dc.identifier.researcherid | M-7494-2019 | cs |
| dc.identifier.scopus | 6507784572 | cs |
| dc.identifier.scopus | 58746959700 | cs |
| dc.identifier.scopus | 6604040821 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/250852 | |
| dc.language.iso | en | cs |
| dc.publisher | Springer Nature | cs |
| dc.relation.ispartof | Scientific Data | cs |
| dc.relation.uri | https://www.nature.com/articles/s41597-024-03991-w | cs |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2052-4463/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
| dc.subject | speech | en |
| dc.subject | stress | en |
| dc.subject | machine learning<br> | en |
| dc.subject | speech | |
| dc.subject | stress | |
| dc.subject | machine learning<br> | |
| dc.title | Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals | en |
| dc.title.alternative | Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-193434 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:13:21 | en |
| sync.item.modts | 2025.10.14 10:37:28 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav automatizace inženýrských úloh a informatiky | cs |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav počítačové grafiky a multimédií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- pesan_sci data_2024_s4159702403991w.pdf
- Size:
- 2.24 MB
- Format:
- Adobe Portable Document Format
- Description:
- file pesan_sci data_2024_s4159702403991w.pdf
