Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals

dc.contributor.authorPešán, Jancs
dc.contributor.authorJuřík, Vojtěchcs
dc.contributor.authorRůžičková, Alexandracs
dc.contributor.authorSvoboda, Vojtěchcs
dc.contributor.authorJanoušek, Otocs
dc.contributor.authorNěmcová, Andreacs
dc.contributor.authorBojanovská, Hanacs
dc.contributor.authorAldabaghová, Jasmínacs
dc.contributor.authorKyslík, Filipcs
dc.contributor.authorVodičková, Kateřinacs
dc.contributor.authorSodomová, Adélacs
dc.contributor.authorBartys, Patrikcs
dc.contributor.authorChudý, Petercs
dc.contributor.authorČernocký, Jancs
dc.coverage.issue1cs
dc.coverage.volume11cs
dc.date.issued2024-11-12cs
dc.description.abstractEarly identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech.en
dc.description.abstractEarly identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationScientific Data. 2024, vol. 11, issue 1, p. 1-9.en
dc.identifier.doi10.1038/s41597-024-03991-wcs
dc.identifier.issn2052-4463cs
dc.identifier.orcid0000-0002-9655-1143cs
dc.identifier.orcid0000-0002-2207-8795cs
dc.identifier.orcid0000-0003-1801-7057cs
dc.identifier.orcid0000-0002-4539-976Xcs
dc.identifier.orcid0000-0002-8800-0210cs
dc.identifier.other193434cs
dc.identifier.researcheridABE-6835-2020cs
dc.identifier.researcheridAAH-1590-2021cs
dc.identifier.researcheridM-7494-2019cs
dc.identifier.scopus6507784572cs
dc.identifier.scopus58746959700cs
dc.identifier.scopus6604040821cs
dc.identifier.urihttp://hdl.handle.net/11012/250852
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofScientific Datacs
dc.relation.urihttps://www.nature.com/articles/s41597-024-03991-wcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2052-4463/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectspeechen
dc.subjectstressen
dc.subjectmachine learning<br>en
dc.subjectspeech
dc.subjectstress
dc.subjectmachine learning<br>
dc.titleSpeech production under stress for machine learning: multimodal dataset of 79 cases and 8 signalsen
dc.title.alternativeSpeech production under stress for machine learning: multimodal dataset of 79 cases and 8 signalsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-193434en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:13:21en
sync.item.modts2025.10.14 10:37:28en
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Ústav automatizace inženýrských úloh a informatikycs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta informačních technologií. Ústav počítačové grafiky a multimédiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pesan_sci data_2024_s4159702403991w.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description:
file pesan_sci data_2024_s4159702403991w.pdf