Comparative Study of Discrete Component Realizations of Fractional-Order Capacitor and Inductor Active Emulators

dc.contributor.authorTsirimokou, Georgiacs
dc.contributor.authorKartci, Aslihancs
dc.contributor.authorKoton, Jaroslavcs
dc.contributor.authorHerencsár, Norbertcs
dc.contributor.authorPsychalinos, Costascs
dc.coverage.issue11cs
dc.coverage.volume27cs
dc.date.accessioned2020-08-04T11:00:53Z
dc.date.available2020-08-04T11:00:53Z
dc.date.issued2018-02-06cs
dc.description.abstractDue to the absence of commercially available fractional-order capacitors and inductors, their implementation can be performed using fractional-order differentiators and integrators, respectively, combined with a voltage-to-current conversion stage. The transfer function of fractional-order differentiators and integrators can be approximated through the utilization of appropriate integer-order transfer functions. In order to achieve that, the Continued Fraction Expansion as well as the Oustaloup’s approximations can be utilized. The accuracy, in terms of magnitude and phase response, of transfer functions of differentiators/integrators derived through the employment of the aforementioned approximations, is very important factor for achieving high performance approximation of the fractional-order elements. A comparative study of the accuracy offered by the Continued Fraction Expansion and the Oustaloup’s approximation is performed in this paper. As a next step, the corresponding implementations of the emulators of the fractional-order elements, derived using fundamental active cells such as operational amplifiers, operational transconductance amplifiers, current conveyors, and current feedback operational amplifiers realized in commercially available discrete-component IC form, are compared in terms of the most important performance characteristics. The most suitable of them are further compared using the OrCAD PSpice software.en
dc.description.abstractDue to the absence of commercially available fractional-order capacitors and inductors, their implementation can be performed using fractional-order differentiators and integrators, respectively, combined with a voltage-to-current conversion stage. The transfer function of fractional-order differentiators and integrators can be approximated through the utilization of appropriate integer-order transfer functions. In order to achieve that, the Continued Fraction Expansion as well as the Oustaloup’s approximations can be utilized. The accuracy, in terms of magnitude and phase response, of transfer functions of differentiators/integrators derived through the employment of the aforementioned approximations, is very important factor for achieving high performance approximation of the fractional-order elements. A comparative study of the accuracy offered by the Continued Fraction Expansion and the Oustaloup’s approximation is performed in this paper. As a next step, the corresponding implementations of the emulators of the fractional-order elements, derived using fundamental active cells such as operational amplifiers, operational transconductance amplifiers, current conveyors, and current feedback operational amplifiers realized in commercially available discrete-component IC form, are compared in terms of the most important performance characteristics. The most suitable of them are further compared using the OrCAD PSpice software.cs
dc.formattextcs
dc.format.extent1850170-1-1850170-26cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS. 2018, vol. 27, issue 11, p. 1850170-1-1850170-26.en
dc.identifier.doi10.1142/S0218126618501700cs
dc.identifier.issn0218-1266cs
dc.identifier.other146601cs
dc.identifier.urihttp://hdl.handle.net/11012/70925
dc.language.isoencs
dc.publisherWorld Scientificcs
dc.relation.ispartofJOURNAL OF CIRCUITS SYSTEMS AND COMPUTERScs
dc.relation.urihttps://www.worldscientific.com/doi/abs/10.1142/S0218126618501700cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0218-1266/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectřetězový zlomek
dc.subjectproudový konvejor
dc.subjectoperační zesilovač s roudovo zpětnou vazbou
dc.subjectfraktální derivátor
dc.subjectfraktální integrátor
dc.subjectoperační zesilovač
dc.subjectoperační transkonduktanční zesilovač
dc.subjectOustalopova aproximace
dc.subjectContinued Fraction Expansionen
dc.subjectcurrent conveyoren
dc.subjectcurrent feedback operational amplifieren
dc.subjectfractional-order differentiatoren
dc.subjectfractional-order integratoren
dc.subjectop-ampen
dc.subjectoperational transconductance amplifieren
dc.subjectOustaloup’s approximationen
dc.titleComparative Study of Discrete Component Realizations of Fractional-Order Capacitor and Inductor Active Emulatorsen
dc.title.alternativeComparative Study of Discrete Component Realizations of Fractional-Order Capacitor and Inductor Active Emulatorscs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-146601en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:00:53en
sync.item.modts2020.08.04 12:28:53en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektronikycs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. oddělení-TKO-SIXcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s0218126618501700.pdf
Size:
1019.05 KB
Format:
Adobe Portable Document Format
Description:
s0218126618501700.pdf