Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG

Loading...
Thumbnail Image

Authors

Ramazanov, Shihgasan
Sobola, Dinara
Orudzhev, Farid
Knápek, Alexandr
Polčák, Josef
Potoček, Michal
Kaspar, Pavel
Dallaev, Rashid

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M–H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.
BiFeO3 (BFO) films on highly oriented pyrolytic graphite (HOPG) substrate were obtained by the atomic layer deposition (ALD) method. The oxidation of HOPG leads to the formation of bubble regions creating defective regions with active centers. Chemisorption occurs at these active sites in ALD. Additionally, carbon interacts with ozone and releases carbon oxides (CO, CO2). Further annealing during the in situ XPS process up to a temperature of 923 K showed a redox reaction and the formation of oxygen vacancies (Vo) in the BFO crystal lattice. Bubble delamination creates flakes of BiFeO3-x/rGO heterostructures. Magnetic measurements (M–H) showed ferromagnetism (FM) at room temperature Ms ~ 120 emu/cm3. The contribution to magnetization is influenced by the factor of charge redistribution on Vo causing the distortion of the lattice as well as by the superstructure formed at the boundary of two phases, which causes strong hybridization due to the superexchange interaction of the BFO film with the FM sublattice of the interface region. The development of a method for obtaining multiferroic structures with high FM values (at room temperature) is promising for magnetically controlled applications.

Description

Citation

Nanomaterials. 2020, vol. 10, issue 10, p. 1990-1-1990-17.
https://www.mdpi.com/2079-4991/10/10/1990

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO