Glycerol-Enhanced Gum Karaya Hydrogel Films with a Sandwich-like Structure Enriched with Octenidine for Antibacterial Action against Multidrug-Resistant Bacteria

dc.contributor.authorČerná, Evacs
dc.contributor.authorNeděla, Vilémcs
dc.contributor.authorTihlaříková, Evacs
dc.contributor.authorBrtníková, Janacs
dc.contributor.authorFohlerová, Zdenkacs
dc.contributor.authorLipový, Břetislavcs
dc.contributor.authorVacek, Lukášcs
dc.contributor.authorRůžička, Filipcs
dc.contributor.authorMatulová, Janacs
dc.contributor.authorVojtová, Lucycs
dc.coverage.issue27cs
dc.coverage.volume10cs
dc.date.accessioned2025-10-14T12:07:33Z
dc.date.available2025-10-14T12:07:33Z
dc.date.issued2025-07-02cs
dc.description.abstractThis study explores the innovative approach in the development of freeze-dried hydrogel films, leveraging the unique properties of gum Karaya (GK), poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), and glycerol with a coating of octenidine dihydrochloride (OCT). These innovative hydrogel films exhibit at a certain glycerol concentration a sandwich-like structure, achieved through a tailored freeze-drying process, which enhances transparency and mechanical stability. OCT provides superior antibacterial performance, effectively combating multidrug-resistant bacteria with a controlled and gradual release mechanism, surpassing conventional OCT solutions that require frequent reapplication for infected wound treatment without the creation of bacterial resistance. Advanced environmental scanning electron microscopy (A-ESEM) reveals the complex microstructure of the hydrogel, highlighting the dense surface layer and interconnected porous bulk. Variations in glycerol concentrations proved to significantly impact hydrogels' properties. Increasing the glycerol concentration decreases the pore size (around 4.5 mu m) while enhancing the polymer network density and flexibility. However, low concentration increases the pore size (7.8-15.6 mu m), impacting enhanced swelling behavior and hydrolytic stability. OCT's rapid antibacterial action, releasing over 30% within the first hour and maintaining prolonged activity for up to 2 weeks, emphasizes the material's potential for diverse applications. Hydrogels' remarkable transparency, porosity, structural stability, and antibacterial efficacy against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains suggest promising uses as transparent dressings, biomedical devices, and infection-resistant surfaces.en
dc.description.abstractThis study explores the innovative approach in the development of freeze-dried hydrogel films, leveraging the unique properties of gum Karaya (GK), poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), and glycerol with a coating of octenidine dihydrochloride (OCT). These innovative hydrogel films exhibit at a certain glycerol concentration a sandwich-like structure, achieved through a tailored freeze-drying process, which enhances transparency and mechanical stability. OCT provides superior antibacterial performance, effectively combating multidrug-resistant bacteria with a controlled and gradual release mechanism, surpassing conventional OCT solutions that require frequent reapplication for infected wound treatment without the creation of bacterial resistance. Advanced environmental scanning electron microscopy (A-ESEM) reveals the complex microstructure of the hydrogel, highlighting the dense surface layer and interconnected porous bulk. Variations in glycerol concentrations proved to significantly impact hydrogels' properties. Increasing the glycerol concentration decreases the pore size (around 4.5 mu m) while enhancing the polymer network density and flexibility. However, low concentration increases the pore size (7.8-15.6 mu m), impacting enhanced swelling behavior and hydrolytic stability. OCT's rapid antibacterial action, releasing over 30% within the first hour and maintaining prolonged activity for up to 2 weeks, emphasizes the material's potential for diverse applications. Hydrogels' remarkable transparency, porosity, structural stability, and antibacterial efficacy against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains suggest promising uses as transparent dressings, biomedical devices, and infection-resistant surfaces.en
dc.formattextcs
dc.format.extent29530-29546cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS Omega. 2025, vol. 10, issue 27, p. 29530-29546.en
dc.identifier.doi10.1021/acsomega.5c02915cs
dc.identifier.issn2470-1343cs
dc.identifier.orcid0000-0002-2969-8460cs
dc.identifier.orcid0000-0002-5132-4094cs
dc.identifier.orcid0000-0002-1232-2301cs
dc.identifier.orcid0000-0001-9187-7606cs
dc.identifier.orcid0000-0002-4072-8173cs
dc.identifier.orcid0000-0001-5281-7045cs
dc.identifier.other198742cs
dc.identifier.researcheridA-6893-2013cs
dc.identifier.researcheridNAX-3551-2025cs
dc.identifier.researcheridD-7762-2012cs
dc.identifier.scopus24448215100cs
dc.identifier.scopus12039667200cs
dc.identifier.urihttps://hdl.handle.net/11012/255573
dc.language.isoencs
dc.relation.ispartofACS Omegacs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsomega.5c02915cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2470-1343/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMICROSTRUCTUREen
dc.subjecthydrogelsen
dc.subjectstabilityen
dc.subjectMICROSTRUCTURE
dc.subjecthydrogels
dc.subjectstability
dc.titleGlycerol-Enhanced Gum Karaya Hydrogel Films with a Sandwich-like Structure Enriched with Octenidine for Antibacterial Action against Multidrug-Resistant Bacteriaen
dc.title.alternativeGlycerol-Enhanced Gum Karaya Hydrogel Films with a Sandwich-like Structure Enriched with Octenidine for Antibacterial Action against Multidrug-Resistant Bacteriaen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-198742en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:07:33en
sync.item.modts2025.10.14 09:45:54en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav elektrotechnologiecs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé biomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cernaetal2025glycerolenhancedgumkarayahydrogelfilmswithasandwichlikestructureenrichedwithoctenidine.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Description:
file cernaetal2025glycerolenhancedgumkarayahydrogelfilmswithasandwichlikestructureenrichedwithoctenidine.pdf