Estimation of the Handwritten Text Skew Based on Binary Moments

dc.contributor.authorBrodic, Darko
dc.contributor.authorMilivojevic, Zoran N.
dc.coverage.issue1cs
dc.coverage.volume21cs
dc.date.accessioned2015-01-22T09:23:56Z
dc.date.available2015-01-22T09:23:56Z
dc.date.issued2012-04cs
dc.description.abstractBinary moments represent one of the methods for the text skew estimation in binary images. It has been used widely for the skew identification of the printed text. However, the handwritten text consists of text objects, which are characterized with different skews. Hence, the method should be adapted for the handwritten text. This is achieved with the image splitting into separate text objects made by the bounding boxes. Obtained text objects represent the isolated binary objects. The application of the moment-based method to each binary object evaluates their local text skews. Due to the accuracy, estimated skew data can be used as an input to the algorithms for the text line segmentation.en
dc.formattextcs
dc.format.extent162-169cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2012, vol. 21, č. 1, s. 162-169. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/37026
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2012/12_01_0162_0169.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectDocument image processingen
dc.subjecttext skewen
dc.subjectbinary momentsen
dc.subjecttext line segmentation.en
dc.titleEstimation of the Handwritten Text Skew Based on Binary Momentsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12_01_0162_0169.pdf
Size:
774 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections