Downsizing the Channel Length of Vertical Organic Electrochemical Transistors

Loading...
Thumbnail Image
Date
2023-05-22
Authors
Brodský, Jan
Gablech, Imrich
Migliaccio, Ludovico
Havlíček, Marek
Donahue, Mary
Glowacki, Eric Daniel
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Altmetrics
Abstract
Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization. We describe the fabrication of such transistors using two types of conducting polymers. First, commercial solution-processed poly(dioxyethylenethiophene):poly(styrene sulfonate), PEDOT:PSS. Next, we also exploit the short channel length to support easy in situ electropolymerization of poly(dioxyethylenethiophene):tetrabutyl ammonium hexafluorophosphate, PEDOT:PF6. Both variants show different promising features, leading the way in terms of transconductance (gm), with the measured peak gm up to 68 mS for relatively thin (280 nm) channel layers on devices with the channel length of 350 nm and with widths of 50, 100, and 200 m. This result suggests that the use of electropolymerized semiconductors, which can be easily customized, is viable with vertical geometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSS lags behind with the lower values of gm; however, it excels in terms of the speed of the device and also has a comparably lower off current (300 nA), leading to unusually high on/off ratio, with values up to 8.6 × 104. Our approach to vertical gap devices is simple, scalable, and can be extended to other applications where small electrochemical channels are desired.
Description
Citation
ACS APPL MATER INTER. 2023, vol. 15, issue 22, p. 27002-27009.
https://pubs.acs.org/doi/full/10.1021/acsami.3c02049
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO