Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method

Loading...
Thumbnail Image

Authors

Mohan, Rajneesh
Drbohlavová, Jana
Hubálek, Jaromír

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Altmetrics

Abstract

A biphasic solvothermal reaction method has been used for the synthesis of TiO2 nanoparticles (NPs). In this method, hydrolysis and nucleation occur at the interface of organic phase (titanium (IV) n-propoxide and stearic acid dissolved in toluene) and water phase (tert-butylamine dissolved in water) resulting in the nucleation of the stearic acid-capped TiO2 NPs. These NPs are hydrophilic due to hydrophobic stearic acid ligands and could be dispersed in toluene, but not in water. These stearic acid-capped TiO2 NPs were surface-modified with 2,3-dimercaptosuccinic acid (DMSA) in order to make them water soluble. The resultant TiO2 NPs were easily redispersed in water without any noticeable aggregation. The Rietveld profile fitting of X-ray diffraction (XRD) pattern of the TiO2 NPs revealed highly crystalline anatase structure. The average crystallite size of TiO2 NPs was calculated to be 6.89 nm, which agrees with TEM results. These results have important implications for the use of TiO2 in biomedical, environmental, and industrial applications.
A biphasic solvothermal reaction method has been used for the synthesis of TiO2 nanoparticles (NPs). In this method, hydrolysis and nucleation occur at the interface of organic phase (titanium (IV) n-propoxide and stearic acid dissolved in toluene) and water phase (tert-butylamine dissolved in water) resulting in the nucleation of the stearic acid-capped TiO2 NPs. These NPs are hydrophilic due to hydrophobic stearic acid ligands and could be dispersed in toluene, but not in water. These stearic acid-capped TiO2 NPs were surface-modified with 2,3-dimercaptosuccinic acid (DMSA) in order to make them water soluble. The resultant TiO2 NPs were easily redispersed in water without any noticeable aggregation. The Rietveld profile fitting of X-ray diffraction (XRD) pattern of the TiO2 NPs revealed highly crystalline anatase structure. The average crystallite size of TiO2 NPs was calculated to be 6.89 nm, which agrees with TEM results. These results have important implications for the use of TiO2 in biomedical, environmental, and industrial applications.

Description

Citation

Nanoscale Research Letters. 2013, vol. 2013, issue 8, p. 1-4.
https://nanoscalereslett.springeropen.com/articles/10.1186/1556-276X-8-503

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 2.0 Generic
Citace PRO