Indoor and Outdoor Backpack Mapping with Calibrated Pair of Velodyne LiDARs
Loading...
Date
2019-09-29
Authors
Veľas, Martin
Španěl, Michal
Herout, Adam
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
This paper presents a human-carried mapping backpack based on a pair of Velodyne LiDAR scanners. Our system is a universal solution both for large scale outdoor and also smaller indoor environments. It benefits from a combination of two LiDAR scanners what makes the odometry estimation more precise. The scanners are mounted under different angles, thus larger space around the backpack is scanned. By fusion with GNSS/INS sub-system, the mapping of featureless environments and also the georeferencing of resulting point cloud is possible. By deploying SoA methods for registration and the loop closure optimization it provides sufficient precision for many applications in BIM (Building Information Modeling), inventory check, construction planning, etc. In our indoor experiments, we evaluated our proposed backpack against ZEB-1 solution, using FARO terrestrial scanner as the reference, yielding similar results in terms of precision, while our system provides higher data density, laser intensity readings, and scalability for large environments.
This paper presents a human-carried mapping backpack based on a pair of Velodyne LiDAR scanners. Our system is a universal solution both for large scale outdoor and also smaller indoor environments. It benefits from a combination of two LiDAR scanners what makes the odometry estimation more precise. The scanners are mounted under different angles, thus larger space around the backpack is scanned. By fusion with GNSS/INS sub-system, the mapping of featureless environments and also the georeferencing of resulting point cloud is possible. By deploying SoA methods for registration and the loop closure optimization it provides sufficient precision for many applications in BIM (Building Information Modeling), inventory check, construction planning, etc. In our indoor experiments, we evaluated our proposed backpack against ZEB-1 solution, using FARO terrestrial scanner as the reference, yielding similar results in terms of precision, while our system provides higher data density, laser intensity readings, and scalability for large environments.
This paper presents a human-carried mapping backpack based on a pair of Velodyne LiDAR scanners. Our system is a universal solution both for large scale outdoor and also smaller indoor environments. It benefits from a combination of two LiDAR scanners what makes the odometry estimation more precise. The scanners are mounted under different angles, thus larger space around the backpack is scanned. By fusion with GNSS/INS sub-system, the mapping of featureless environments and also the georeferencing of resulting point cloud is possible. By deploying SoA methods for registration and the loop closure optimization it provides sufficient precision for many applications in BIM (Building Information Modeling), inventory check, construction planning, etc. In our indoor experiments, we evaluated our proposed backpack against ZEB-1 solution, using FARO terrestrial scanner as the reference, yielding similar results in terms of precision, while our system provides higher data density, laser intensity readings, and scalability for large environments.
Description
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en

0000-0003-0880-3732