Anomaly Detection in Industrial Networks: Current State, Classification, and Key Challenges
dc.contributor.author | KuchaĆ, Karel | cs |
dc.contributor.author | Fujdiak, Radek | cs |
dc.coverage.issue | 3 | cs |
dc.coverage.volume | 25 | cs |
dc.date.accessioned | 2025-06-10T11:56:00Z | |
dc.date.available | 2025-06-10T11:56:00Z | |
dc.date.issued | 2024-12-12 | cs |
dc.description.abstract | Industrial networks, due to communication convergence, face a growing exposure to cyber threats, necessitating the need to address a wider range of threats, alongside their detectability and classification. As critical components designed with a strong emphasis on availability, industrial networks require precise classification of anomalies, encompassing not just cyber anomalies but also operational and service disruptions. This paper provides an analysis of these anomalies, categorizing them into three groups based on their impact. The key contribution of this study lies in the strategic distribution of data sources across the Operational Technology (OT) network, facilitating the collection of relevant data for application in Machine Learning (ML) or Neural Network (NN) models. A comprehensive review of current anomaly processing techniques in industrial networks is presented, identifying significant research challenges to advance artificial intelligence methods for anomaly classification in OT environments. Additionally, this work examines common statistical methods for anomaly detection and offers a comparative analysis of prevalent ML and NN techniques. | en |
dc.format | text | cs |
dc.format.extent | 1-14 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IEEE SENSORS JOURNAL. 2024, vol. 25, issue 3, p. 1-14. | en |
dc.identifier.doi | 10.1109/JSEN.2024.3512857 | cs |
dc.identifier.issn | 1558-1748 | cs |
dc.identifier.orcid | 0000-0002-5972-9037 | cs |
dc.identifier.orcid | 0000-0002-8319-0633 | cs |
dc.identifier.other | 193646 | cs |
dc.identifier.researcherid | ABG-4089-2020 | cs |
dc.identifier.scopus | 56610269000 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/251600 | |
dc.language.iso | en | cs |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | cs |
dc.relation.ispartof | IEEE SENSORS JOURNAL | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/10797650 | cs |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1558-1748/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | cs |
dc.subject | Anomaly types | en |
dc.subject | sensory data | en |
dc.subject | cyber-security | en |
dc.subject | industrial control system (ICS) | en |
dc.subject | operational technology (OT) | en |
dc.subject | Neural Network (NN) | en |
dc.title | Anomaly Detection in Industrial Networks: Current State, Classification, and Key Challenges | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.grantNumber | info:eu-repo/grantAgreement/MSM/EH/EH22_008/0004617 | cs |
sync.item.dbid | VAV-193646 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.06.10 13:56:00 | en |
sync.item.modts | 2025.06.10 13:33:06 | en |
thesis.grantor | VysokĂ© uÄenĂ technickĂ© v BrnÄ. Fakulta elektrotechniky a komunikaÄnĂch technologiĂ. Ăstav telekomunikacĂ | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Anomaly_Detection_in_Industrial_Networks_Current_State_Classification_and_Key_Challenges.pdf
- Size:
- 9.86 MB
- Format:
- Adobe Portable Document Format
- Description:
- file Anomaly_Detection_in_Industrial_Networks_Current_State_Classification_and_Key_Challenges.pdf