Multiobjective Reinforcement Learning Based Energy Consumption in C-RAN enabled Massive MIMO
dc.contributor.author | Sharma, Shruti | |
dc.contributor.author | Yoon, Wonsik | |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 31 | cs |
dc.date.accessioned | 2022-04-29T07:44:22Z | |
dc.date.available | 2022-04-29T07:44:22Z | |
dc.date.issued | 2022-04 | cs |
dc.description.abstract | Multiobjective optimization has become a suitable method to resolve conflicting objectives and enhance the performance evaluation of wireless networks. In this study, we consider a multiobjective reinforcement learning (MORL) approach for the resource allocation and energy consumption in C-RANs. We propose the MORL method with two conflicting objectives. Herein, we define the state and action spaces, and reward for the MORL agent. Furthermore, we develop a Q-learning algorithm that controls the ON-OFF action of remote radio heads (RRHs) depending on the position and nearby users with goal of selecting the best single policy that optimizes the trade-off between EE and QoS. We analyze the performance of our Q-learning algorithm by comparing it with simple ON-OFF scheme and heuristic algorithm. The simulation results demonstrated that normalized ECs of simple ON-OFF, heuristic and Q-learning algorithm were 0.99, 0.85, and 0.8 respectively. Our proposed MORL-based Q-learning algorithm achieves superior EE performance compared with simple ON-OFF scheme and heuristic algorithms. | en |
dc.format | text | cs |
dc.format.extent | 155-163 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2022 vol. 31, č. 1, s. 155-163. ISSN 1210-2512 | cs |
dc.identifier.doi | 10.13164/re.2022.0155 | en |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | http://hdl.handle.net/11012/204143 | |
dc.language.iso | en | cs |
dc.publisher | Společnost pro radioelektronické inženýrství | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | https://www.radioeng.cz/fulltexts/2022/22_01_0155_0163.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International license | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Convergence | en |
dc.subject | energy consumption | en |
dc.subject | reinforcement learning | en |
dc.subject | reward | en |
dc.subject | optimization | en |
dc.title | Multiobjective Reinforcement Learning Based Energy Consumption in C-RAN enabled Massive MIMO | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta eletrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 22_01_0155_0163.pdf
- Size:
- 641.12 KB
- Format:
- Adobe Portable Document Format
- Description: