Multiobjective Reinforcement Learning Based Energy Consumption in C-RAN enabled Massive MIMO

Loading...
Thumbnail Image
Date
2022-04
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
Multiobjective optimization has become a suitable method to resolve conflicting objectives and enhance the performance evaluation of wireless networks. In this study, we consider a multiobjective reinforcement learning (MORL) approach for the resource allocation and energy consumption in C-RANs. We propose the MORL method with two conflicting objectives. Herein, we define the state and action spaces, and reward for the MORL agent. Furthermore, we develop a Q-learning algorithm that controls the ON-OFF action of remote radio heads (RRHs) depending on the position and nearby users with goal of selecting the best single policy that optimizes the trade-off between EE and QoS. We analyze the performance of our Q-learning algorithm by comparing it with simple ON-OFF scheme and heuristic algorithm. The simulation results demonstrated that normalized ECs of simple ON-OFF, heuristic and Q-learning algorithm were 0.99, 0.85, and 0.8 respectively. Our proposed MORL-based Q-learning algorithm achieves superior EE performance compared with simple ON-OFF scheme and heuristic algorithms.
Description
Citation
Radioengineering. 2022 vol. 31, č. 1, s. 155-163. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2022/22_01_0155_0163.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO