Application Of Optimization Algorithms To The Genome Assembly

but.event.date26.04.2018cs
but.event.titleStudent EEICT 2018cs
dc.contributor.authorJugas, Robin
dc.date.accessioned2019-03-04T10:06:00Z
dc.date.available2019-03-04T10:06:00Z
dc.date.issued2018cs
dc.description.abstractThe paper results from development of new sequencing methods together with the need of suitable genome assembly algorithms. It combines the genomic signal processing, correlation techniques and optimization algorithms for solving assembly task. Genomic signals are made by conversion of letter-based DNA into the form of digital signal, thus the methods of digital signal processing can be applied. Possible overlaps between reads converted into signals are found by computing correlation coefficient similarly to cross-correlation. We acquire similarity matrix and the task is to find the path through it achieving minimum distance criterion. For the task, the two optimization techniques were employed: ant colony optimization (ACO) and simulated annealing (SA). The result implies the possibility of using the ACO at the task of creating path through similarly to graphtheory-based algorithms.en
dc.formattextcs
dc.format.extent595-599cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 24th Conference STUDENT EEICT 2018. s. 595-599. ISBN 978-80-214-5614-3cs
dc.identifier.isbn978-80-214-5614-3
dc.identifier.urihttp://hdl.handle.net/11012/138303
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 24th Conference STUDENT EEICT 2018en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectbioinformaticsen
dc.subjectgenome assemblyen
dc.subjectgenomic signal processingen
dc.subjectoptimization tecen
dc.titleApplication Of Optimization Algorithms To The Genome Assemblyen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eeict2018-595.pdf
Size:
676.6 KB
Format:
Adobe Portable Document Format
Description: