Application Of Optimization Algorithms To The Genome Assembly

Loading...
Thumbnail Image
Date
2018
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
The paper results from development of new sequencing methods together with the need of suitable genome assembly algorithms. It combines the genomic signal processing, correlation techniques and optimization algorithms for solving assembly task. Genomic signals are made by conversion of letter-based DNA into the form of digital signal, thus the methods of digital signal processing can be applied. Possible overlaps between reads converted into signals are found by computing correlation coefficient similarly to cross-correlation. We acquire similarity matrix and the task is to find the path through it achieving minimum distance criterion. For the task, the two optimization techniques were employed: ant colony optimization (ACO) and simulated annealing (SA). The result implies the possibility of using the ACO at the task of creating path through similarly to graphtheory-based algorithms.
Description
Citation
Proceedings of the 24th Conference STUDENT EEICT 2018. s. 595-599. ISBN 978-80-214-5614-3
http://www.feec.vutbr.cz/EEICT/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO