Lagrangian for circuits with higher-order elements

Loading...
Thumbnail Image

Authors

Biolek, Zdeněk
Biolek, Dalibor
Biolková, Viera

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The necessary and sufficient conditions of the validity of Hamilton’s variational principle for circuits consisting of (alpha,beta) elements from Chua’s periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called -diagonal with a constant sum of the indices alpha and beta. In this case, the Lagrangian is the sum of the state functions of elements of the L or +R types minus the sum of the state functions of elements of the C or -R types. The equations of motion generated by this Lagrangian are always of even-order. If all elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais-Uhlenbeck oscillator via the elements from Chua’s table.
The necessary and sufficient conditions of the validity of Hamilton’s variational principle for circuits consisting of (alpha,beta) elements from Chua’s periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called -diagonal with a constant sum of the indices alpha and beta. In this case, the Lagrangian is the sum of the state functions of elements of the L or +R types minus the sum of the state functions of elements of the C or -R types. The equations of motion generated by this Lagrangian are always of even-order. If all elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais-Uhlenbeck oscillator via the elements from Chua’s table.

Description

Citation

Entropy. 2019, vol. 21, issue 11, p. 1-19.
https://www.mdpi.com/1099-4300/21/11/1059

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO