Exploiting spectral and cepstral handwriting features on diagnosing Parkinson’s disease

dc.contributor.authorNolazco-Flores, Juan A.cs
dc.contributor.authorFaúndez Zanuy, Marcoscs
dc.contributor.authorDe La Cueva, V.M.cs
dc.contributor.authorMekyska, Jiřícs
dc.coverage.issue1cs
dc.coverage.volume9cs
dc.date.accessioned2022-03-22T15:56:35Z
dc.date.available2022-03-22T15:56:35Z
dc.date.issued2021-10-08cs
dc.description.abstractParkinson’s disease (PD) is the second most frequent neurodegenerative disease associated with several motor symptoms, including alterations in handwriting, also known as PD dysgraphia. Several computerized decision support systems for PD dysgraphia have been proposed, however, the associated challenges require new approaches for more accurate diagnosis. Therefore, this work adds spectral and cepstral handwriting features to the already-used temporal, kinematic and statistics handwriting features. First, we calculate temporal and kinematic features using displacement; statistic features (SF) using displacement, and horizontal and vertical displacement; spectral (SDF) and cepstral (CDF) using displacement, horizontal and vertical displacement and pressure. Since the employed dataset (PaHaW) contains only 37 PD patients and 38 healthy control subjects (HC), then as the second step, we augment the percentage of the smaller training set to equal the larger. Next, we augment both classes to increase the training patient’s data and added random Gaussian noise in all augmentations. Third, the most relevant features were selected using the modified fast correlation-based filtering method (mFCBF). Finally, autoML is employed to train and test more than ten plain and ensembled classifiers. Experimental results show that adding spectral and cepstral features to temporal, kinematics and statistics features highly improved classification accuracy to 98.57%. Our proposed model, with lower computational complexities, outperforms conventional state-of-the-art models for all tasks, which is 97.62%.en
dc.formattextcs
dc.format.extent141599-141610cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2021, vol. 9, issue 1, p. 141599-141610.en
dc.identifier.doi10.1109/ACCESS.2021.3119035cs
dc.identifier.issn2169-3536cs
dc.identifier.other172708cs
dc.identifier.urihttp://hdl.handle.net/11012/204025
dc.language.isoencs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2021.3119035cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectParkinson’s diseaseen
dc.subjectdysgraphiaen
dc.subjectonline handwritingen
dc.subjectfeature extractionen
dc.subjectdata augmentationen
dc.subjectautoMLen
dc.titleExploiting spectral and cepstral handwriting features on diagnosing Parkinson’s diseaseen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-172708en
sync.item.dbtypeVAVen
sync.item.insts2022.03.22 16:56:35en
sync.item.modts2022.03.22 16:15:02en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mekyska_2021.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:
Mekyska_2021.pdf