Exploiting spectral and cepstral handwriting features on diagnosing Parkinson’s disease

Loading...
Thumbnail Image

Authors

Nolazco-Flores, Juan A.
Faúndez Zanuy, Marcos
De La Cueva, V.M.
Mekyska, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Altmetrics

Abstract

Parkinson’s disease (PD) is the second most frequent neurodegenerative disease associated with several motor symptoms, including alterations in handwriting, also known as PD dysgraphia. Several computerized decision support systems for PD dysgraphia have been proposed, however, the associated challenges require new approaches for more accurate diagnosis. Therefore, this work adds spectral and cepstral handwriting features to the already-used temporal, kinematic and statistics handwriting features. First, we calculate temporal and kinematic features using displacement; statistic features (SF) using displacement, and horizontal and vertical displacement; spectral (SDF) and cepstral (CDF) using displacement, horizontal and vertical displacement and pressure. Since the employed dataset (PaHaW) contains only 37 PD patients and 38 healthy control subjects (HC), then as the second step, we augment the percentage of the smaller training set to equal the larger. Next, we augment both classes to increase the training patient’s data and added random Gaussian noise in all augmentations. Third, the most relevant features were selected using the modified fast correlation-based filtering method (mFCBF). Finally, autoML is employed to train and test more than ten plain and ensembled classifiers. Experimental results show that adding spectral and cepstral features to temporal, kinematics and statistics features highly improved classification accuracy to 98.57%. Our proposed model, with lower computational complexities, outperforms conventional state-of-the-art models for all tasks, which is 97.62%.
Parkinson’s disease (PD) is the second most frequent neurodegenerative disease associated with several motor symptoms, including alterations in handwriting, also known as PD dysgraphia. Several computerized decision support systems for PD dysgraphia have been proposed, however, the associated challenges require new approaches for more accurate diagnosis. Therefore, this work adds spectral and cepstral handwriting features to the already-used temporal, kinematic and statistics handwriting features. First, we calculate temporal and kinematic features using displacement; statistic features (SF) using displacement, and horizontal and vertical displacement; spectral (SDF) and cepstral (CDF) using displacement, horizontal and vertical displacement and pressure. Since the employed dataset (PaHaW) contains only 37 PD patients and 38 healthy control subjects (HC), then as the second step, we augment the percentage of the smaller training set to equal the larger. Next, we augment both classes to increase the training patient’s data and added random Gaussian noise in all augmentations. Third, the most relevant features were selected using the modified fast correlation-based filtering method (mFCBF). Finally, autoML is employed to train and test more than ten plain and ensembled classifiers. Experimental results show that adding spectral and cepstral features to temporal, kinematics and statistics features highly improved classification accuracy to 98.57%. Our proposed model, with lower computational complexities, outperforms conventional state-of-the-art models for all tasks, which is 97.62%.

Description

Citation

IEEE Access. 2021, vol. 9, issue 1, p. 141599-141610.
https://doi.org/10.1109/ACCESS.2021.3119035

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO