YIG/CoFeB Bilayer Magnonic Isolator

dc.contributor.authorZenbaa, Nouracs
dc.contributor.authorLevchenko, Khrystyna O.cs
dc.contributor.authorPanda, Jaganandhacs
dc.contributor.authorDavídková, Kristýnacs
dc.contributor.authorRuhwedel, Moritzcs
dc.contributor.authorKnauer, Sebastiancs
dc.contributor.authorLindner, Morriscs
dc.contributor.authorDubs, Carstencs
dc.contributor.authorWang, Qics
dc.contributor.authorUrbánek, Michalcs
dc.contributor.authorPirro, Phillipcs
dc.contributor.authorChumak, Andrii V.cs
dc.coverage.issue1cs
dc.coverage.volume16cs
dc.date.issued2025-05-02cs
dc.description.abstractWe demonstrate a magnonic isolator based on a bilayer structure of yttrium iron garnet (YIG) and cobalt iron boron (CoFeB). The bilayer exhibits pronounced nonreciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, whereas the CoFeB layer introduces strong magnetic anisotropy, critical for achieving the isolator functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of magneto-static surface spin waves, significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and microfocused Brillouin light scattering measurements and is supported by numerical simulations. The developed YIG/SiO2/CoFeB bilayer magnonic isolator demonstrates the feasibility of leveraging nonreciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies.en
dc.description.abstractWe demonstrate a magnonic isolator based on a bilayer structure of yttrium iron garnet (YIG) and cobalt iron boron (CoFeB). The bilayer exhibits pronounced nonreciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, whereas the CoFeB layer introduces strong magnetic anisotropy, critical for achieving the isolator functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of magneto-static surface spin waves, significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and microfocused Brillouin light scattering measurements and is supported by numerical simulations. The developed YIG/SiO2/CoFeB bilayer magnonic isolator demonstrates the feasibility of leveraging nonreciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies.en
dc.formattextcs
dc.format.extent5cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Magnetics Letters. 2025, vol. 16, issue 1, 5 p.en
dc.identifier.doi10.1109/LMAG.2025.3551990cs
dc.identifier.issn1949-307Xcs
dc.identifier.orcid0000-0003-0072-2073cs
dc.identifier.other197892cs
dc.identifier.researcheridM-7120-2019cs
dc.identifier.urihttp://hdl.handle.net/11012/251025
dc.language.isoencs
dc.relation.ispartofIEEE Magnetics Letterscs
dc.relation.urihttps://ieeexplore.ieee.org/document/10930529cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1949-307X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMagnetostaticsen
dc.subjectMagnetostatic wavesen
dc.subjectMeasurement by laser beamen
dc.subjectMagnetomechanical effectsen
dc.subjectMagnetic field measurementen
dc.subjectMagnonicsen
dc.subjectSaturation magnetizationen
dc.subjectDispersionen
dc.subjectIsolatorsen
dc.subjectSurface wavesen
dc.subjectNanomagneticsen
dc.subjectmagnonicsen
dc.subjectnonreciprocityen
dc.subjectspin wavesen
dc.subjectMagnetostatics
dc.subjectMagnetostatic waves
dc.subjectMeasurement by laser beam
dc.subjectMagnetomechanical effects
dc.subjectMagnetic field measurement
dc.subjectMagnonics
dc.subjectSaturation magnetization
dc.subjectDispersion
dc.subjectIsolators
dc.subjectSurface waves
dc.subjectNanomagnetics
dc.subjectmagnonics
dc.subjectnonreciprocity
dc.subjectspin waves
dc.titleYIG/CoFeB Bilayer Magnonic Isolatoren
dc.title.alternativeYIG/CoFeB Bilayer Magnonic Isolatoren
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LM/LM2023051cs
sync.item.dbidVAV-197892en
sync.item.dbtypeVAVen
sync.item.insts2025.11.24 10:54:16en
sync.item.modts2025.11.24 10:32:40en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YIG_CoFeB_Bilayer_Magnonic_Isolator.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:
file YIG_CoFeB_Bilayer_Magnonic_Isolator.pdf