YIG/CoFeB Bilayer Magnonic Isolator
| dc.contributor.author | Zenbaa, Noura | cs |
| dc.contributor.author | Levchenko, Khrystyna O. | cs |
| dc.contributor.author | Panda, Jaganandha | cs |
| dc.contributor.author | Davídková, Kristýna | cs |
| dc.contributor.author | Ruhwedel, Moritz | cs |
| dc.contributor.author | Knauer, Sebastian | cs |
| dc.contributor.author | Lindner, Morris | cs |
| dc.contributor.author | Dubs, Carsten | cs |
| dc.contributor.author | Wang, Qi | cs |
| dc.contributor.author | Urbánek, Michal | cs |
| dc.contributor.author | Pirro, Phillip | cs |
| dc.contributor.author | Chumak, Andrii V. | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 16 | cs |
| dc.date.issued | 2025-05-02 | cs |
| dc.description.abstract | We demonstrate a magnonic isolator based on a bilayer structure of yttrium iron garnet (YIG) and cobalt iron boron (CoFeB). The bilayer exhibits pronounced nonreciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, whereas the CoFeB layer introduces strong magnetic anisotropy, critical for achieving the isolator functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of magneto-static surface spin waves, significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and microfocused Brillouin light scattering measurements and is supported by numerical simulations. The developed YIG/SiO2/CoFeB bilayer magnonic isolator demonstrates the feasibility of leveraging nonreciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies. | en |
| dc.description.abstract | We demonstrate a magnonic isolator based on a bilayer structure of yttrium iron garnet (YIG) and cobalt iron boron (CoFeB). The bilayer exhibits pronounced nonreciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, whereas the CoFeB layer introduces strong magnetic anisotropy, critical for achieving the isolator functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of magneto-static surface spin waves, significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and microfocused Brillouin light scattering measurements and is supported by numerical simulations. The developed YIG/SiO2/CoFeB bilayer magnonic isolator demonstrates the feasibility of leveraging nonreciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies. | en |
| dc.format | text | cs |
| dc.format.extent | 5 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | IEEE Magnetics Letters. 2025, vol. 16, issue 1, 5 p. | en |
| dc.identifier.doi | 10.1109/LMAG.2025.3551990 | cs |
| dc.identifier.issn | 1949-307X | cs |
| dc.identifier.orcid | 0000-0003-0072-2073 | cs |
| dc.identifier.other | 197892 | cs |
| dc.identifier.researcherid | M-7120-2019 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/251025 | |
| dc.language.iso | en | cs |
| dc.relation.ispartof | IEEE Magnetics Letters | cs |
| dc.relation.uri | https://ieeexplore.ieee.org/document/10930529 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1949-307X/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Magnetostatics | en |
| dc.subject | Magnetostatic waves | en |
| dc.subject | Measurement by laser beam | en |
| dc.subject | Magnetomechanical effects | en |
| dc.subject | Magnetic field measurement | en |
| dc.subject | Magnonics | en |
| dc.subject | Saturation magnetization | en |
| dc.subject | Dispersion | en |
| dc.subject | Isolators | en |
| dc.subject | Surface waves | en |
| dc.subject | Nanomagnetics | en |
| dc.subject | magnonics | en |
| dc.subject | nonreciprocity | en |
| dc.subject | spin waves | en |
| dc.subject | Magnetostatics | |
| dc.subject | Magnetostatic waves | |
| dc.subject | Measurement by laser beam | |
| dc.subject | Magnetomechanical effects | |
| dc.subject | Magnetic field measurement | |
| dc.subject | Magnonics | |
| dc.subject | Saturation magnetization | |
| dc.subject | Dispersion | |
| dc.subject | Isolators | |
| dc.subject | Surface waves | |
| dc.subject | Nanomagnetics | |
| dc.subject | magnonics | |
| dc.subject | nonreciprocity | |
| dc.subject | spin waves | |
| dc.title | YIG/CoFeB Bilayer Magnonic Isolator | en |
| dc.title.alternative | YIG/CoFeB Bilayer Magnonic Isolator | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.grantNumber | info:eu-repo/grantAgreement/MSM/LM/LM2023051 | cs |
| sync.item.dbid | VAV-197892 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.11.24 10:54:16 | en |
| sync.item.modts | 2025.11.24 10:32:40 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs |
| thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1 | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- YIG_CoFeB_Bilayer_Magnonic_Isolator.pdf
- Size:
- 1.43 MB
- Format:
- Adobe Portable Document Format
- Description:
- file YIG_CoFeB_Bilayer_Magnonic_Isolator.pdf
