YIG/CoFeB Bilayer Magnonic Isolator

Loading...
Thumbnail Image

Authors

Zenbaa, Noura
Levchenko, Khrystyna O.
Panda, Jaganandha
Davídková, Kristýna
Ruhwedel, Moritz
Knauer, Sebastian
Lindner, Morris
Dubs, Carsten
Wang, Qi
Urbánek, Michal

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Altmetrics

Abstract

We demonstrate a magnonic isolator based on a bilayer structure of yttrium iron garnet (YIG) and cobalt iron boron (CoFeB). The bilayer exhibits pronounced nonreciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, whereas the CoFeB layer introduces strong magnetic anisotropy, critical for achieving the isolator functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of magneto-static surface spin waves, significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and microfocused Brillouin light scattering measurements and is supported by numerical simulations. The developed YIG/SiO2/CoFeB bilayer magnonic isolator demonstrates the feasibility of leveraging nonreciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies.
We demonstrate a magnonic isolator based on a bilayer structure of yttrium iron garnet (YIG) and cobalt iron boron (CoFeB). The bilayer exhibits pronounced nonreciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, whereas the CoFeB layer introduces strong magnetic anisotropy, critical for achieving the isolator functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of magneto-static surface spin waves, significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and microfocused Brillouin light scattering measurements and is supported by numerical simulations. The developed YIG/SiO2/CoFeB bilayer magnonic isolator demonstrates the feasibility of leveraging nonreciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies.

Description

Citation

IEEE Magnetics Letters. 2025, vol. 16, issue 1, 5 p.
https://ieeexplore.ieee.org/document/10930529

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO