Dynamic Reduction of Network Flow Optimization Problem: Case of Waste-to-Energy Infrastructure Planning in Czech Republic

dc.contributor.authorPluskal, Jaroslavcs
dc.contributor.authorŠomplák, Radovancs
dc.contributor.authorKůdela, Jakubcs
dc.contributor.authorEryganov, Ivancs
dc.coverage.issue1cs
dc.coverage.volume24cs
dc.date.accessioned2025-04-04T11:56:47Z
dc.date.available2025-04-04T11:56:47Z
dc.date.issued2024-10-01cs
dc.description.abstractNowadays, many sophisticated tools based on various mathematical approaches are used to support planning and strategic decision-making. In the field of waste management, allocation and location problems based mainly on the structure network flow problem are used with respect to infrastructure planning. Modern formulations of the problem allow the inclusion of integer and nonlinear constraints that reflect real-world operations. However, despite the advanced computational technology, such real-world problems are difficult to solve in adequate detail due to the large scale of the problem. Thus, the links in the system are simplified, but most often a transport network is aggregated. The individual nodes in the system may then represent areas with tens or hundreds of thousands of inhabitants, which does not provide sufficient insight for location tasks. This paper presents an approach to dynamically reduce the network with respect to selected points of interest. The selected areas are modeled in greater detail, while with increasing distance the entities are more aggregated into larger units. The approach is based on a transformation of the original network and subsequent cluster analysis, preferably using existing transport infrastructure. The presented approach provides the possibility of practical application of complex tools that are currently mostly theoretical due to high computational demands. The methodology is applied to a case study of Waste-to-Energy infrastructure planning, which needs to model a large area to fill a large capacity facility.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationEnergy Conversion and Management-X. 2024, vol. 24, issue 1, p. 1-10.en
dc.identifier.doi10.1016/j.ecmx.2024.100707cs
dc.identifier.issn2590-1745cs
dc.identifier.orcid0000-0002-2658-7490cs
dc.identifier.orcid0000-0002-5714-4537cs
dc.identifier.orcid0000-0002-4372-2105cs
dc.identifier.orcid0000-0003-2203-882Xcs
dc.identifier.other189493cs
dc.identifier.researcheridQ-9462-2017cs
dc.identifier.researcheridP-7327-2018cs
dc.identifier.researcheridHNR-5985-2023cs
dc.identifier.scopus57212244833cs
dc.identifier.scopus55515602000cs
dc.identifier.scopus56769626500cs
dc.identifier.scopus57219437840cs
dc.identifier.urihttps://hdl.handle.net/11012/250785
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofEnergy Conversion and Management-Xcs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2590174524001855cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2590-1745/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectModel-size reduction techniquesen
dc.subjectCluster analysisen
dc.subjectCoordinates transformationen
dc.subjectInfrastructure planningen
dc.subjectEnergy recoveryen
dc.titleDynamic Reduction of Network Flow Optimization Problem: Case of Waste-to-Energy Infrastructure Planning in Czech Republicen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-189493en
sync.item.dbtypeVAVen
sync.item.insts2025.04.04 13:56:47en
sync.item.modts2025.04.02 14:32:08en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav procesního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2590174524001855main.pdf
Size:
5.57 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2590174524001855main.pdf