Self-Supervised Learning Driven Cross-Domain Feature Fusion Network for Hyperspectral Image Classification
dc.contributor.author | Fang, Q. | |
dc.contributor.author | Zhao, Y. | |
dc.contributor.author | Wang, J. | |
dc.contributor.author | Zhang, L. | |
dc.coverage.issue | 3 | cs |
dc.coverage.volume | 34 | cs |
dc.date.accessioned | 2025-07-24T12:38:41Z | |
dc.date.available | 2025-07-24T12:38:41Z | |
dc.date.issued | 2025-09 | cs |
dc.description.abstract | Hyperspectral image (HSI) classification faces significant challenges due to the high cost of acquiring labeled samples. To mitigate this, we propose SSCF-Net, a novel self-supervised learning driven cross-domain feature fusion Network. SSCF-Net uniquely leverages readily available labeled natural images (source domain) to aid HSI (target domain) classification by transfer learning. Specifically, we employ rotation-based self-supervision in the source domain to learn transferable features, which are then transferred to the HSI domain. Within SSCF-Net, we effectively fuse local and global features: local features are extracted by a jointly trained module combining VGG and two-dimensional long short-term memory networks (TD-LSTM) networks, while global features capturing long-range dependencies are learned via a Transformer model. Crucially, in the HSI domain, we further employ contrastive learning as a self-supervised strategy to maximally utilize the limited labeled data. Extensive experiments on three benchmark HSI datasets (Salinas, Indian Pines, WHU-Hi-LongKou) demonstrate that SSCF-Net significantly outperforms existing methods, validating its effectiveness in addressing the label scarcity problem. The code is available at https://github.com/6pangbo/SSCF-Net. | en |
dc.format | text | cs |
dc.format.extent | 494-508 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2025 vol. 34, č. 3, s. 494-508. ISSN 1210-2512 | cs |
dc.identifier.doi | 10.13164/re.2025.0494 | en |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | https://hdl.handle.net/11012/255220 | |
dc.language.iso | en | cs |
dc.publisher | Radioengineering Society | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | https://www.radioeng.cz/fulltexts/2025/25_03_0494_0508.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International license | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Hyperspectral image classification | en |
dc.subject | self-supervised learning | en |
dc.subject | transfer learning | en |
dc.subject | feature fusion | en |
dc.title | Self-Supervised Learning Driven Cross-Domain Feature Fusion Network for Hyperspectral Image Classification | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 25_03_0494_0508.pdf
- Size:
- 6.79 MB
- Format:
- Adobe Portable Document Format
- Description: